Jian Yin


pdf bib
SEEK: Segmented Embedding of Knowledge Graphs
Wentao Xu | Shun Zheng | Liang He | Bin Shao | Jian Yin | Tie-Yan Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In recent years, knowledge graph embedding becomes a pretty hot research topic of artificial intelligence and plays increasingly vital roles in various downstream applications, such as recommendation and question answering. However, existing methods for knowledge graph embedding can not make a proper trade-off between the model complexity and the model expressiveness, which makes them still far from satisfactory. To mitigate this problem, we propose a lightweight modeling framework that can achieve highly competitive relational expressiveness without increasing the model complexity. Our framework focuses on the design of scoring functions and highlights two critical characteristics: 1) facilitating sufficient feature interactions; 2) preserving both symmetry and antisymmetry properties of relations. It is noteworthy that owing to the general and elegant design of scoring functions, our framework can incorporate many famous existing methods as special cases. Moreover, extensive experiments on public benchmarks demonstrate the efficiency and effectiveness of our framework. Source codes and data can be found at https://github.com/Wentao-Xu/SEEK.

pdf bib
LogicalFactChecker: Leveraging Logical Operations for Fact Checking with Graph Module Network
Wanjun Zhong | Duyu Tang | Zhangyin Feng | Nan Duan | Ming Zhou | Ming Gong | Linjun Shou | Daxin Jiang | Jiahai Wang | Jian Yin
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Verifying the correctness of a textual statement requires not only semantic reasoning about the meaning of words, but also symbolic reasoning about logical operations like count, superlative, aggregation, etc. In this work, we propose LogicalFactChecker, a neural network approach capable of leveraging logical operations for fact checking. It achieves the state-of-the-art performance on TABFACT, a large-scale, benchmark dataset built for verifying a textual statement with semi-structured tables. This is achieved by a graph module network built upon the Transformer-based architecture. With a textual statement and a table as the input, LogicalFactChecker automatically derives a program (a.k.a. logical form) of the statement in a semantic parsing manner. A heterogeneous graph is then constructed to capture not only the structures of the table and the program, but also the connections between inputs with different modalities. Such a graph reveals the related contexts of each word in the statement, the table and the program. The graph is used to obtain graph-enhanced contextual representations of words in Transformer-based architecture. After that, a program-driven module network is further introduced to exploit the hierarchical structure of the program, where semantic compositionality is dynamically modeled along the program structure with a set of function-specific modules. Ablation experiments suggest that both the heterogeneous graph and the module network are important to obtain strong results.

pdf bib
Evidence-Aware Inferential Text Generation with Vector Quantised Variational AutoEncoder
Daya Guo | Duyu Tang | Nan Duan | Jian Yin | Daxin Jiang | Ming Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Generating inferential texts about an event in different perspectives requires reasoning over different contexts that the event occurs. Existing works usually ignore the context that is not explicitly provided, resulting in a context-independent semantic representation that struggles to support the generation. To address this, we propose an approach that automatically finds evidence for an event from a large text corpus, and leverages the evidence to guide the generation of inferential texts. Our approach works in an encoderdecoder manner and is equipped with Vector Quantised-Variational Autoencoder, where the encoder outputs representations from a distribution over discrete variables. Such discrete representations enable automatically selecting relevant evidence, which not only facilitates evidence-aware generation, but also provides a natural way to uncover rationales behind the generation. Our approach provides state-of-the-art performance on both Event2mind and Atomic datasets. More importantly, we find that with discrete representations, our model selectively uses evidence to generate different inferential texts.

pdf bib
Reasoning Over Semantic-Level Graph for Fact Checking
Wanjun Zhong | Jingjing Xu | Duyu Tang | Zenan Xu | Nan Duan | Ming Zhou | Jiahai Wang | Jian Yin
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Fact checking is a challenging task because verifying the truthfulness of a claim requires reasoning about multiple retrievable evidence. In this work, we present a method suitable for reasoning about the semantic-level structure of evidence. Unlike most previous works, which typically represent evidence sentences with either string concatenation or fusing the features of isolated evidence sentences, our approach operates on rich semantic structures of evidence obtained by semantic role labeling. We propose two mechanisms to exploit the structure of evidence while leveraging the advances of pre-trained models like BERT, GPT or XLNet. Specifically, using XLNet as the backbone, we first utilize the graph structure to re-define the relative distances of words, with the intuition that semantically related words should have short distances. Then, we adopt graph convolutional network and graph attention network to propagate and aggregate information from neighboring nodes on the graph. We evaluate our system on FEVER, a benchmark dataset for fact checking, and find that rich structural information is helpful and both our graph-based mechanisms improve the accuracy. Our model is the state-of-the-art system in terms of both official evaluation metrics, namely claim verification accuracy and FEVER score.

pdf bib
Low-Resource Generation of Multi-hop Reasoning Questions
Jianxing Yu | Wei Liu | Shuang Qiu | Qinliang Su | Kai Wang | Xiaojun Quan | Jian Yin
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper focuses on generating multi-hop reasoning questions from the raw text in a low resource circumstance. Such questions have to be syntactically valid and need to logically correlate with the answers by deducing over multiple relations on several sentences in the text. Specifically, we first build a multi-hop generation model and guide it to satisfy the logical rationality by the reasoning chain extracted from a given text. Since the labeled data is limited and insufficient for training, we propose to learn the model with the help of a large scale of unlabeled data that is much easier to obtain. Such data contains rich expressive forms of the questions with structural patterns on syntax and semantics. These patterns can be estimated by the neural hidden semi-Markov model using latent variables. With latent patterns as a prior, we can regularize the generation model and produce the optimal results. Experimental results on the HotpotQA data set demonstrate the effectiveness of our model. Moreover, we apply the generated results to the task of machine reading comprehension and achieve significant performance improvements.

pdf bib
Neural Deepfake Detection with Factual Structure of Text
Wanjun Zhong | Duyu Tang | Zenan Xu | Ruize Wang | Nan Duan | Ming Zhou | Jiahai Wang | Jian Yin
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Deepfake detection, the task of automatically discriminating machine-generated text, is increasingly critical with recent advances in natural language generative models. Existing approaches to deepfake detection typically represent documents with coarse-grained representations. However, they struggle to capture factual structures of documents, which is a discriminative factor between machine-generated and human-written text according to our statistical analysis. To address this, we propose a graph-based model that utilizes the factual structure of a document for deepfake detection of text. Our approach represents the factual structure of a given document as an entity graph, which is further utilized to learn sentence representations with a graph neural network. Sentence representations are then composed to a document representation for making predictions, where consistent relations between neighboring sentences are sequentially modeled. Results of experiments on two public deepfake datasets show that our approach significantly improves strong base models built with RoBERTa. Model analysis further indicates that our model can distinguish the difference in the factual structure between machine-generated text and human-written text.


pdf bib
Coupling Retrieval and Meta-Learning for Context-Dependent Semantic Parsing
Daya Guo | Duyu Tang | Nan Duan | Ming Zhou | Jian Yin
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this paper, we present an approach to incorporate retrieved datapoints as supporting evidence for context-dependent semantic parsing, such as generating source code conditioned on the class environment. Our approach naturally combines a retrieval model and a meta-learner, where the former learns to find similar datapoints from the training data, and the latter considers retrieved datapoints as a pseudo task for fast adaptation. Specifically, our retriever is a context-aware encoder-decoder model with a latent variable which takes context environment into consideration, and our meta-learner learns to utilize retrieved datapoints in a model-agnostic meta-learning paradigm for fast adaptation. We conduct experiments on CONCODE and CSQA datasets, where the context refers to class environment in JAVA codes and conversational history, respectively. We use sequence-to-action model as the base semantic parser, which performs the state-of-the-art accuracy on both datasets. Results show that both the context-aware retriever and the meta-learning strategy improve accuracy, and our approach performs better than retrieve-and-edit baselines.

pdf bib
Inferential Machine Comprehension: Answering Questions by Recursively Deducing the Evidence Chain from Text
Jianxing Yu | Zhengjun Zha | Jian Yin
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper focuses on the topic of inferential machine comprehension, which aims to fully understand the meanings of given text to answer generic questions, especially the ones needed reasoning skills. In particular, we first encode the given document, question and options in a context aware way. We then propose a new network to solve the inference problem by decomposing it into a series of attention-based reasoning steps. The result of the previous step acts as the context of next step. To make each step can be directly inferred from the text, we design an operational cell with prior structure. By recursively linking the cells, the inferred results are synthesized together to form the evidence chain for reasoning, where the reasoning direction can be guided by imposing structural constraints to regulate interactions on the cells. Moreover, a termination mechanism is introduced to dynamically determine the uncertain reasoning depth, and the network is trained by reinforcement learning. Experimental results on 3 popular data sets, including MCTest, RACE and MultiRC, demonstrate the effectiveness of our approach.


pdf bib
Question Generation from SQL Queries Improves Neural Semantic Parsing
Daya Guo | Yibo Sun | Duyu Tang | Nan Duan | Jian Yin | Hong Chi | James Cao | Peng Chen | Ming Zhou
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In this paper, we study how to learn a semantic parser of state-of-the-art accuracy with less supervised training data. We conduct our study on WikiSQL, the largest hand-annotated semantic parsing dataset to date. First, we demonstrate that question generation is an effective method that empowers us to learn a state-of-the-art neural network based semantic parser with thirty percent of the supervised training data. Second, we show that applying question generation to the full supervised training data further improves the state-of-the-art model. In addition, we observe that there is a logarithmic relationship between the accuracy of a semantic parser and the amount of training data.

pdf bib
Neural Math Word Problem Solver with Reinforcement Learning
Danqing Huang | Jing Liu | Chin-Yew Lin | Jian Yin
Proceedings of the 27th International Conference on Computational Linguistics

Sequence-to-sequence model has been applied to solve math word problems. The model takes math problem descriptions as input and generates equations as output. The advantage of sequence-to-sequence model requires no feature engineering and can generate equations that do not exist in training data. However, our experimental analysis reveals that this model suffers from two shortcomings: (1) generate spurious numbers; (2) generate numbers at wrong positions. In this paper, we propose incorporating copy and alignment mechanism to the sequence-to-sequence model (namely CASS) to address these shortcomings. To train our model, we apply reinforcement learning to directly optimize the solution accuracy. It overcomes the “train-test discrepancy” issue of maximum likelihood estimation, which uses the surrogate objective of maximizing equation likelihood during training while the evaluation metric is solution accuracy (non-differentiable) at test time. Furthermore, to explore the effectiveness of our neural model, we use our model output as a feature and incorporate it into the feature-based model. Experimental results show that (1) The copy and alignment mechanism is effective to address the two issues; (2) Reinforcement learning leads to better performance than maximum likelihood on this task; (3) Our neural model is complementary to the feature-based model and their combination significantly outperforms the state-of-the-art results.

pdf bib
Using Intermediate Representations to Solve Math Word Problems
Danqing Huang | Jin-Ge Yao | Chin-Yew Lin | Qingyu Zhou | Jian Yin
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

To solve math word problems, previous statistical approaches attempt at learning a direct mapping from a problem description to its corresponding equation system. However, such mappings do not include the information of a few higher-order operations that cannot be explicitly represented in equations but are required to solve the problem. The gap between natural language and equations makes it difficult for a learned model to generalize from limited data. In this work we present an intermediate meaning representation scheme that tries to reduce this gap. We use a sequence-to-sequence model with a novel attention regularization term to generate the intermediate forms, then execute them to obtain the final answers. Since the intermediate forms are latent, we propose an iterative labeling framework for learning by leveraging supervision signals from both equations and answers. Our experiments show using intermediate forms outperforms directly predicting equations.


pdf bib
Learning Fine-Grained Expressions to Solve Math Word Problems
Danqing Huang | Shuming Shi | Chin-Yew Lin | Jian Yin
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

This paper presents a novel template-based method to solve math word problems. This method learns the mappings between math concept phrases in math word problems and their math expressions from training data. For each equation template, we automatically construct a rich template sketch by aggregating information from various problems with the same template. Our approach is implemented in a two-stage system. It first retrieves a few relevant equation system templates and aligns numbers in math word problems to those templates for candidate equation generation. It then does a fine-grained inference to obtain the final answer. Experiment results show that our method achieves an accuracy of 28.4% on the linear Dolphin18K benchmark, which is 10% (54% relative) higher than previous state-of-the-art systems while achieving an accuracy increase of 12% (59% relative) on the TS6 benchmark subset.


pdf bib
How well do Computers Solve Math Word Problems? Large-Scale Dataset Construction and Evaluation
Danqing Huang | Shuming Shi | Chin-Yew Lin | Jian Yin | Wei-Ying Ma
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)