Jian Pei


2020

pdf bib
A Graph Representation of Semi-structured Data for Web Question Answering
Xingyao Zhang | Linjun Shou | Jian Pei | Ming Gong | Lijie Wen | Daxin Jiang
Proceedings of the 28th International Conference on Computational Linguistics

The abundant semi-structured data on the Web, such as HTML-based tables and lists, provide commercial search engines a rich information source for question answering (QA). Different from plain text passages in Web documents, Web tables and lists have inherent structures, which carry semantic correlations among various elements in tables and lists. Many existing studies treat tables and lists as flat documents with pieces of text and do not make good use of semantic information hidden in structures. In this paper, we propose a novel graph representation of Web tables and lists based on a systematic categorization of the components in semi-structured data as well as their relations. We also develop pre-training and reasoning techniques on the graph model for the QA task. Extensive experiments on several real datasets collected from a commercial engine verify the effectiveness of our approach. Our method improves F1 score by 3.90 points over the state-of-the-art baselines.

pdf bib
Cross-lingual Machine Reading Comprehension with Language Branch Knowledge Distillation
Junhao Liu | Linjun Shou | Jian Pei | Ming Gong | Min Yang | Daxin Jiang
Proceedings of the 28th International Conference on Computational Linguistics

Cross-lingual Machine Reading Comprehension (CLMRC) remains a challenging problem due to the lack of large-scale annotated datasets in low-source languages, such as Arabic, Hindi, and Vietnamese. Many previous approaches use translation data by translating from a rich-source language, such as English, to low-source languages as auxiliary supervision. However, how to effectively leverage translation data and reduce the impact of noise introduced by translation remains onerous. In this paper, we tackle this challenge and enhance the cross-lingual transferring performance by a novel augmentation approach named Language Branch Machine Reading Comprehension (LBMRC). A language branch is a group of passages in one single language paired with questions in all target languages. We train multiple machine reading comprehension (MRC) models proficient in individual language based on LBMRC. Then, we devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages. Combining the LBMRC and multilingual distillation can be more robust to the data noises, therefore, improving the model’s cross-lingual ability. Meanwhile, the produced single multilingual model can apply to all target languages, which saves the cost of training, inference, and maintenance for multiple models. Extensive experiments on two CLMRC benchmarks clearly show the effectiveness of our proposed method.

2019

pdf bib
Detecting Customer Complaint Escalation with Recurrent Neural Networks and Manually-Engineered Features
Wei Yang | Luchen Tan | Chunwei Lu | Anqi Cui | Han Li | Xi Chen | Kun Xiong | Muzi Wang | Ming Li | Jian Pei | Jimmy Lin
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)

Consumers dissatisfied with the normal dispute resolution process provided by an e-commerce company’s customer service agents have the option of escalating their complaints by filing grievances with a government authority. This paper tackles the challenge of monitoring ongoing text chat dialogues to identify cases where the customer expresses such an intent, providing triage and prioritization for a separate pool of specialized agents specially trained to handle more complex situations. We describe a hybrid model that tackles this challenge by integrating recurrent neural networks with manually-engineered features. Experiments show that both components are complementary and contribute to overall recall, outperforming competitive baselines. A trial online deployment of our model demonstrates its business value in improving customer service.