Jialong Tang


2020

pdf bib
Syntactic and Semantic-driven Learning for Open Information Extraction
Jialong Tang | Yaojie Lu | Hongyu Lin | Xianpei Han | Le Sun | Xinyan Xiao | Hua Wu
Findings of the Association for Computational Linguistics: EMNLP 2020

One of the biggest bottlenecks in building accurate, high coverage neural open IE systems is the need for large labelled corpora. The diversity of open domain corpora and the variety of natural language expressions further exacerbate this problem. In this paper, we propose a syntactic and semantic-driven learning approach, which can learn neural open IE models without any human-labelled data by leveraging syntactic and semantic knowledge as noisier, higher-level supervision. Specifically, we first employ syntactic patterns as data labelling functions and pretrain a base model using the generated labels. Then we propose a syntactic and semantic-driven reinforcement learning algorithm, which can effectively generalize the base model to open situations with high accuracy. Experimental results show that our approach significantly outperforms the supervised counterparts, and can even achieve competitive performance to supervised state-of-the-art (SoA) model.

pdf bib
A Rigorous Study on Named Entity Recognition: Can Fine-tuning Pretrained Model Lead to the Promised Land?
Hongyu Lin | Yaojie Lu | Jialong Tang | Xianpei Han | Le Sun | Zhicheng Wei | Nicholas Jing Yuan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Fine-tuning pretrained model has achieved promising performance on standard NER benchmarks. Generally, these benchmarks are blessed with strong name regularity, high mention coverage and sufficient context diversity. Unfortunately, when scaling NER to open situations, these advantages may no longer exist. And therefore it raises a critical question of whether previous creditable approaches can still work well when facing these challenges. As there is no currently available dataset to investigate this problem, this paper proposes to conduct randomization test on standard benchmarks. Specifically, we erase name regularity, mention coverage and context diversity respectively from the benchmarks, in order to explore their impact on the generalization ability of models. To further verify our conclusions, we also construct a new open NER dataset that focuses on entity types with weaker name regularity and lower mention coverage to verify our conclusion. From both randomization test and empirical experiments, we draw the conclusions that 1) name regularity is critical for the models to generalize to unseen mentions; 2) high mention coverage may undermine the model generalization ability and 3) context patterns may not require enormous data to capture when using pretrained encoders.

2019

pdf bib
Progressive Self-Supervised Attention Learning for Aspect-Level Sentiment Analysis
Jialong Tang | Ziyao Lu | Jinsong Su | Yubin Ge | Linfeng Song | Le Sun | Jiebo Luo
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In aspect-level sentiment classification (ASC), it is prevalent to equip dominant neural models with attention mechanisms, for the sake of acquiring the importance of each context word on the given aspect. However, such a mechanism tends to excessively focus on a few frequent words with sentiment polarities, while ignoring infrequent ones. In this paper, we propose a progressive self-supervised attention learning approach for neural ASC models, which automatically mines useful attention supervision information from a training corpus to refine attention mechanisms. Specifically, we iteratively conduct sentiment predictions on all training instances. Particularly, at each iteration, the context word with the maximum attention weight is extracted as the one with active/misleading influence on the correct/incorrect prediction of every instance, and then the word itself is masked for subsequent iterations. Finally, we augment the conventional training objective with a regularization term, which enables ASC models to continue equally focusing on the extracted active context words while decreasing weights of those misleading ones. Experimental results on multiple datasets show that our proposed approach yields better attention mechanisms, leading to substantial improvements over the two state-of-the-art neural ASC models. Source code and trained models are available at https://github.com/DeepLearnXMU/PSSAttention.