Ji Qi


pdf bib
A Self-Attentive Model with Gate Mechanism for Spoken Language Understanding
Changliang Li | Liang Li | Ji Qi
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Spoken Language Understanding (SLU), which typically involves intent determination and slot filling, is a core component of spoken dialogue systems. Joint learning has shown to be effective in SLU given that slot tags and intents are supposed to share knowledge with each other. However, most existing joint learning methods only consider joint learning by sharing parameters on surface level rather than semantic level. In this work, we propose a novel self-attentive model with gate mechanism to fully utilize the semantic correlation between slot and intent. Our model first obtains intent-augmented embeddings based on neural network with self-attention mechanism. And then the intent semantic representation is utilized as the gate for labelling slot tags. The objectives of both tasks are optimized simultaneously via joint learning in an end-to-end way. We conduct experiment on popular benchmark ATIS. The results show that our model achieves state-of-the-art and outperforms other popular methods by a large margin in terms of both intent detection error rate and slot filling F1-score. This paper gives a new perspective for research on SLU.

pdf bib
Chinese Grammatical Error Diagnosis Based on Policy Gradient LSTM Model
Changliang Li | Ji Qi
Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications

Chinese Grammatical Error Diagnosis (CGED) is a natural language processing task for the NLPTEA2018 workshop held during ACL2018. The goal of this task is to diagnose Chinese sentences containing four kinds of grammatical errors through the model and find out the sentence errors. Chinese grammatical error diagnosis system is a very important tool, which can help Chinese learners automatically diagnose grammatical errors in many scenarios. However, due to the limitations of the Chinese language’s own characteristics and datasets, the traditional model faces the problem of extreme imbalances in the positive and negative samples and the disappearance of gradients. In this paper, we propose a sequence labeling method based on the Policy Gradient LSTM model and apply it to this task to solve the above problems. The results show that our model can achieve higher precision scores in the case of lower False positive rate (FPR) and it is convenient to optimize the model on-line.