Jekaterina Novikova


2020

pdf bib
Impact of ASR on Alzheimer’s Disease Detection: All Errors are Equal, but Deletions are More Equal than Others
Aparna Balagopalan | Ksenia Shkaruta | Jekaterina Novikova
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

Automatic Speech Recognition (ASR) is a critical component of any fully-automated speech-based dementia detection model. However, despite years of speech recognition research, little is known about the impact of ASR accuracy on dementia detection. In this paper, we experiment with controlled amounts of artificially generated ASR errors and investigate their influence on dementia detection. We find that deletion errors affect detection performance the most, due to their impact on the features of syntactic complexity and discourse representation in speech. We show the trend to be generalisable across two different datasets for cognitive impairment detection. As a conclusion, we propose optimising the ASR to reflect a higher penalty for deletion errors in order to improve dementia detection performance.

pdf bib
Fantastic Features and Where to Find Them: Detecting Cognitive Impairment with a Subsequence Classification Guided Approach
Ben Eyre | Aparna Balagopalan | Jekaterina Novikova
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

Despite the widely reported success of embedding-based machine learning methods on natural language processing tasks, the use of more easily interpreted engineered features remains common in fields such as cognitive impairment (CI) detection. Manually engineering features from noisy text is time and resource consuming, and can potentially result in features that do not enhance model performance. To combat this, we describe a new approach to feature engineering that leverages sequential machine learning models and domain knowledge to predict which features help enhance performance. We provide a concrete example of this method on a standard data set of CI speech and demonstrate that CI classification accuracy improves by 2.3% over a strong baseline when using features produced by this method. This demonstration provides an example of how this method can be used to assist classification in fields where interpretability is important, such as health care.

2019

pdf bib
Lexical Features Are More Vulnerable, Syntactic Features Have More Predictive Power
Jekaterina Novikova | Aparna Balagopalan | Ksenia Shkaruta | Frank Rudzicz
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

Understanding the vulnerability of linguistic features extracted from noisy text is important for both developing better health text classification models and for interpreting vulnerabilities of natural language models. In this paper, we investigate how generic language characteristics, such as syntax or the lexicon, are impacted by artificial text alterations. The vulnerability of features is analysed from two perspectives: (1) the level of feature value change, and (2) the level of change of feature predictive power as a result of text modifications. We show that lexical features are more sensitive to text modifications than syntactic ones. However, we also demonstrate that these smaller changes of syntactic features have a stronger influence on classification performance downstream, compared to the impact of changes to lexical features. Results are validated across three datasets representing different text-classification tasks, with different levels of lexical and syntactic complexity of both conversational and written language.

pdf bib
Detecting cognitive impairments by agreeing on interpretations of linguistic features
Zining Zhu | Jekaterina Novikova | Frank Rudzicz
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Linguistic features have shown promising applications for detecting various cognitive impairments. To improve detection accuracies, increasing the amount of data or the number of linguistic features have been two applicable approaches. However, acquiring additional clinical data can be expensive, and hand-crafting features is burdensome. In this paper, we take a third approach, proposing Consensus Networks (CNs), a framework to classify after reaching agreements between modalities. We divide linguistic features into non-overlapping subsets according to their modalities, and let neural networks learn low-dimensional representations that agree with each other. These representations are passed into a classifier network. All neural networks are optimized iteratively. In this paper, we also present two methods that improve the performance of CNs. We then present ablation studies to illustrate the effectiveness of modality division. To understand further what happens in CNs, we visualize the representations during training. Overall, using all of the 413 linguistic features, our models significantly outperform traditional classifiers, which are used by the state-of-the-art papers.

2018

pdf bib
RankME: Reliable Human Ratings for Natural Language Generation
Jekaterina Novikova | Ondřej Dušek | Verena Rieser
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Human evaluation for natural language generation (NLG) often suffers from inconsistent user ratings. While previous research tends to attribute this problem to individual user preferences, we show that the quality of human judgements can also be improved by experimental design. We present a novel rank-based magnitude estimation method (RankME), which combines the use of continuous scales and relative assessments. We show that RankME significantly improves the reliability and consistency of human ratings compared to traditional evaluation methods. In addition, we show that it is possible to evaluate NLG systems according to multiple, distinct criteria, which is important for error analysis. Finally, we demonstrate that RankME, in combination with Bayesian estimation of system quality, is a cost-effective alternative for ranking multiple NLG systems.

pdf bib
Findings of the E2E NLG Challenge
Ondřej Dušek | Jekaterina Novikova | Verena Rieser
Proceedings of the 11th International Conference on Natural Language Generation

This paper summarises the experimental setup and results of the first shared task on end-to-end (E2E) natural language generation (NLG) in spoken dialogue systems. Recent end-to-end generation systems are promising since they reduce the need for data annotation. However, they are currently limited to small, delexicalised datasets. The E2E NLG shared task aims to assess whether these novel approaches can generate better-quality output by learning from a dataset containing higher lexical richness, syntactic complexity and diverse discourse phenomena. We compare 62 systems submitted by 17 institutions, covering a wide range of approaches, including machine learning architectures – with the majority implementing sequence-to-sequence models (seq2seq) – as well as systems based on grammatical rules and templates.

2017

pdf bib
Sympathy Begins with a Smile, Intelligence Begins with a Word: Use of Multimodal Features in Spoken Human-Robot Interaction
Jekaterina Novikova | Christian Dondrup | Ioannis Papaioannou | Oliver Lemon
Proceedings of the First Workshop on Language Grounding for Robotics

Recognition of social signals, coming from human facial expressions or prosody of human speech, is a popular research topic in human-robot interaction studies. There is also a long line of research in the spoken dialogue community that investigates user satisfaction in relation to dialogue characteristics. However, very little research relates a combination of multimodal social signals and language features detected during spoken face-to-face human-robot interaction to the resulting user perception of a robot. In this paper we show how different emotional facial expressions of human users, in combination with prosodic characteristics of human speech and features of human-robot dialogue, correlate with users’ impressions of the robot after a conversation. We find that happiness in the user’s recognised facial expression strongly correlates with likeability of a robot, while dialogue-related features (such as number of human turns or number of sentences per robot utterance) correlate with perceiving a robot as intelligent. In addition, we show that the facial expression emotional features and prosody are better predictors of human ratings related to perceived robot likeability and anthropomorphism, while linguistic and non-linguistic features more often predict perceived robot intelligence and interpretability. As such, these characteristics may in future be used as an online reward signal for in-situ Reinforcement Learning-based adaptive human-robot dialogue systems.

pdf bib
The E2E Dataset: New Challenges For End-to-End Generation
Jekaterina Novikova | Ondřej Dušek | Verena Rieser
Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue

This paper describes the E2E data, a new dataset for training end-to-end, data-driven natural language generation systems in the restaurant domain, which is ten times bigger than existing, frequently used datasets in this area. The E2E dataset poses new challenges: (1) its human reference texts show more lexical richness and syntactic variation, including discourse phenomena; (2) generating from this set requires content selection. As such, learning from this dataset promises more natural, varied and less template-like system utterances. We also establish a baseline on this dataset, which illustrates some of the difficulties associated with this data.

pdf bib
Why We Need New Evaluation Metrics for NLG
Jekaterina Novikova | Ondřej Dušek | Amanda Cercas Curry | Verena Rieser
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

The majority of NLG evaluation relies on automatic metrics, such as BLEU . In this paper, we motivate the need for novel, system- and data-independent automatic evaluation methods: We investigate a wide range of metrics, including state-of-the-art word-based and novel grammar-based ones, and demonstrate that they only weakly reflect human judgements of system outputs as generated by data-driven, end-to-end NLG. We also show that metric performance is data- and system-specific. Nevertheless, our results also suggest that automatic metrics perform reliably at system-level and can support system development by finding cases where a system performs poorly.

2016

pdf bib
The aNALoGuE Challenge: Non Aligned Language GEneration
Jekaterina Novikova | Verena Rieser
Proceedings of the 9th International Natural Language Generation conference

pdf bib
Crowd-sourcing NLG Data: Pictures Elicit Better Data.
Jekaterina Novikova | Oliver Lemon | Verena Rieser
Proceedings of the 9th International Natural Language Generation conference

2014

pdf bib
The Tutorbot Corpus — A Corpus for Studying Tutoring Behaviour in Multiparty Face-to-Face Spoken Dialogue
Maria Koutsombogera | Samer Al Moubayed | Bajibabu Bollepalli | Ahmed Hussen Abdelaziz | Martin Johansson | José David Aguas Lopes | Jekaterina Novikova | Catharine Oertel | Kalin Stefanov | Gül Varol
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

This paper describes a novel experimental setup exploiting state-of-the-art capture equipment to collect a multimodally rich game-solving collaborative multiparty dialogue corpus. The corpus is targeted and designed towards the development of a dialogue system platform to explore verbal and nonverbal tutoring strategies in multiparty spoken interactions. The dialogue task is centered on two participants involved in a dialogue aiming to solve a card-ordering game. The participants were paired into teams based on their degree of extraversion as resulted from a personality test. With the participants sits a tutor that helps them perform the task, organizes and balances their interaction and whose behavior was assessed by the participants after each interaction. Different multimodal signals captured and auto-synchronized by different audio-visual capture technologies, together with manual annotations of the tutor’s behavior constitute the Tutorbot corpus. This corpus is exploited to build a situated model of the interaction based on the participants’ temporally-changing state of attention, their conversational engagement and verbal dominance, and their correlation with the verbal and visual feedback and conversation regulatory actions generated by the tutor.