Jacob Bremerman


pdf bib
The JHU Submission to the 2020 Duolingo Shared Task on Simultaneous Translation and Paraphrase for Language Education
Huda Khayrallah | Jacob Bremerman | Arya D. McCarthy | Kenton Murray | Winston Wu | Matt Post
Proceedings of the Fourth Workshop on Neural Generation and Translation

This paper presents the Johns Hopkins University submission to the 2020 Duolingo Shared Task on Simultaneous Translation and Paraphrase for Language Education (STAPLE). We participated in all five language tasks, placing first in each. Our approach involved a language-agnostic pipeline of three components: (1) building strong machine translation systems on general-domain data, (2) fine-tuning on Duolingo-provided data, and (3) generating n-best lists which are then filtered with various score-based techniques. In addi- tion to the language-agnostic pipeline, we attempted a number of linguistically-motivated approaches, with, unfortunately, little success. We also find that improving BLEU performance of the beam-search generated translation does not necessarily improve on the task metric—weighted macro F1 of an n-best list.

pdf bib
On the Evaluation of Machine Translation n-best Lists
Jacob Bremerman | Huda Khayrallah | Douglas Oard | Matt Post
Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems

The standard machine translation evaluation framework measures the single-best output of machine translation systems. There are, however, many situations where n-best lists are needed, yet there is no established way of evaluating them. This paper establishes a framework for addressing n-best evaluation by outlining three different questions one could consider when determining how one would define a ‘good’ n-best list and proposing evaluation measures for each question. The first and principal contribution is an evaluation measure that characterizes the translation quality of an entire n-best list by asking whether many of the valid translations are placed near the top of the list. The second is a measure that uses gold translations with preference annotations to ask to what degree systems can produce ranked lists in preference order. The third is a measure that rewards partial matches, evaluating the closeness of the many items in an n-best list to a set of many valid references. These three perspectives make clear that having access to many references can be useful when n-best evaluation is the goal.