Jaap Jumelet


2020

pdf bib
diagNNose: A Library for Neural Activation Analysis
Jaap Jumelet
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

In this paper we introduce diagNNose, an open source library for analysing the activations of deep neural networks. diagNNose contains a wide array of interpretability techniques that provide fundamental insights into the inner workings of neural networks. We demonstrate the functionality of diagNNose with a case study on subject-verb agreement within language models. diagNNose is available at https://github.com/i-machine-think/diagnnose.

2019

pdf bib
Analysing Neural Language Models: Contextual Decomposition Reveals Default Reasoning in Number and Gender Assignment
Jaap Jumelet | Willem Zuidema | Dieuwke Hupkes
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Extensive research has recently shown that recurrent neural language models are able to process a wide range of grammatical phenomena. How these models are able to perform these remarkable feats so well, however, is still an open question. To gain more insight into what information LSTMs base their decisions on, we propose a generalisation of Contextual Decomposition (GCD). In particular, this setup enables us to accurately distil which part of a prediction stems from semantic heuristics, which part truly emanates from syntactic cues and which part arise from the model biases themselves instead. We investigate this technique on tasks pertaining to syntactic agreement and co-reference resolution and discover that the model strongly relies on a default reasoning effect to perform these tasks.

2018

pdf bib
Do Language Models Understand Anything? On the Ability of LSTMs to Understand Negative Polarity Items
Jaap Jumelet | Dieuwke Hupkes
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

In this paper, we attempt to link the inner workings of a neural language model to linguistic theory, focusing on a complex phenomenon well discussed in formal linguistics: (negative) polarity items. We briefly discuss the leading hypotheses about the licensing contexts that allow negative polarity items and evaluate to what extent a neural language model has the ability to correctly process a subset of such constructions. We show that the model finds a relation between the licensing context and the negative polarity item and appears to be aware of the scope of this context, which we extract from a parse tree of the sentence. With this research, we hope to pave the way for other studies linking formal linguistics to deep learning.