Ioannis Konstas


2020

pdf bib
In Layman’s Terms: Semi-Open Relation Extraction from Scientific Texts
Ruben Kruiper | Julian Vincent | Jessica Chen-Burger | Marc Desmulliez | Ioannis Konstas
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Information Extraction (IE) from scientific texts can be used to guide readers to the central information in scientific documents. But narrow IE systems extract only a fraction of the information captured, and Open IE systems do not perform well on the long and complex sentences encountered in scientific texts. In this work we combine the output of both types of systems to achieve Semi-Open Relation Extraction, a new task that we explore in the Biology domain. First, we present the Focused Open Biological Information Extraction (FOBIE) dataset and use FOBIE to train a state-of-the-art narrow scientific IE system to extract trade-off relations and arguments that are central to biology texts. We then run both the narrow IE system and a state-of-the-art Open IE system on a corpus of 10K open-access scientific biological texts. We show that a significant amount (65%) of erroneous and uninformative Open IE extractions can be filtered using narrow IE extractions. Furthermore, we show that the retained extractions are significantly more often informative to a reader.

pdf bib
Fact-based Content Weighting for Evaluating Abstractive Summarisation
Xinnuo Xu | Ondřej Dušek | Jingyi Li | Verena Rieser | Ioannis Konstas
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Abstractive summarisation is notoriously hard to evaluate since standard word-overlap-based metrics are insufficient. We introduce a new evaluation metric which is based on fact-level content weighting, i.e. relating the facts of the document to the facts of the summary. We fol- low the assumption that a good summary will reflect all relevant facts, i.e. the ones present in the ground truth (human-generated refer- ence summary). We confirm this hypothe- sis by showing that our weightings are highly correlated to human perception and compare favourably to the recent manual highlight- based metric of Hardy et al. (2019).

pdf bib
CompGuessWhat?!: A Multi-task Evaluation Framework for Grounded Language Learning
Alessandro Suglia | Ioannis Konstas | Andrea Vanzo | Emanuele Bastianelli | Desmond Elliott | Stella Frank | Oliver Lemon
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Approaches to Grounded Language Learning are commonly focused on a single task-based final performance measure which may not depend on desirable properties of the learned hidden representations, such as their ability to predict object attributes or generalize to unseen situations. To remedy this, we present GroLLA, an evaluation framework for Grounded Language Learning with Attributes based on three sub-tasks: 1) Goal-oriented evaluation; 2) Object attribute prediction evaluation; and 3) Zero-shot evaluation. We also propose a new dataset CompGuessWhat?! as an instance of this framework for evaluating the quality of learned neural representations, in particular with respect to attribute grounding. To this end, we extend the original GuessWhat?! dataset by including a semantic layer on top of the perceptual one. Specifically, we enrich the VisualGenome scene graphs associated with the GuessWhat?! images with several attributes from resources such as VISA and ImSitu. We then compare several hidden state representations from current state-of-the-art approaches to Grounded Language Learning. By using diagnostic classifiers, we show that current models’ learned representations are not expressive enough to encode object attributes (average F1 of 44.27). In addition, they do not learn strategies nor representations that are robust enough to perform well when novel scenes or objects are involved in gameplay (zero-shot best accuracy 50.06%).

pdf bib
History for Visual Dialog: Do we really need it?
Shubham Agarwal | Trung Bui | Joon-Young Lee | Ioannis Konstas | Verena Rieser
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Visual Dialogue involves “understanding” the dialogue history (what has been discussed previously) and the current question (what is asked), in addition to grounding information in the image, to accurately generate the correct response. In this paper, we show that co-attention models which explicitly encode dialoh history outperform models that don’t, achieving state-of-the-art performance (72 % NDCG on val set). However, we also expose shortcomings of the crowdsourcing dataset collection procedure, by showing that dialogue history is indeed only required for a small amount of the data, and that the current evaluation metric encourages generic replies. To that end, we propose a challenging subset (VisdialConv) of the VisdialVal set and the benchmark NDCG of 63%.

pdf bib
Proceedings of the Fourth Workshop on Neural Generation and Translation
Alexandra Birch | Andrew Finch | Hiroaki Hayashi | Kenneth Heafield | Marcin Junczys-Dowmunt | Ioannis Konstas | Xian Li | Graham Neubig | Yusuke Oda
Proceedings of the Fourth Workshop on Neural Generation and Translation

pdf bib
Findings of the Fourth Workshop on Neural Generation and Translation
Kenneth Heafield | Hiroaki Hayashi | Yusuke Oda | Ioannis Konstas | Andrew Finch | Graham Neubig | Xian Li | Alexandra Birch
Proceedings of the Fourth Workshop on Neural Generation and Translation

We describe the finding of the Fourth Workshop on Neural Generation and Translation, held in concert with the annual conference of the Association for Computational Linguistics (ACL 2020). First, we summarize the research trends of papers presented in the proceedings. Second, we describe the results of the three shared tasks 1) efficient neural machine translation (NMT) where participants were tasked with creating NMT systems that are both accurate and efficient, and 2) document-level generation and translation (DGT) where participants were tasked with developing systems that generate summaries from structured data, potentially with assistance from text in another language and 3) STAPLE task: creation of as many possible translations of a given input text. This last shared task was organised by Duolingo.

pdf bib
A Scientific Information Extraction Dataset for Nature Inspired Engineering
Ruben Kruiper | Julian F.V. Vincent | Jessica Chen-Burger | Marc P.Y. Desmulliez | Ioannis Konstas
Proceedings of the 12th Language Resources and Evaluation Conference

Nature has inspired various ground-breaking technological developments in applications ranging from robotics to aerospace engineering and the manufacturing of medical devices. However, accessing the information captured in scientific biology texts is a time-consuming and hard task that requires domain-specific knowledge. Improving access for outsiders can help interdisciplinary research like Nature Inspired Engineering. This paper describes a dataset of 1,500 manually-annotated sentences that express domain-independent relations between central concepts in a scientific biology text, such as trade-offs and correlations. The arguments of these relations can be Multi Word Expressions and have been annotated with modifying phrases to form non-projective graphs. The dataset allows for training and evaluating Relation Extraction algorithms that aim for coarse-grained typing of scientific biological documents, enabling a high-level filter for engineers.

pdf bib
Imagining Grounded Conceptual Representations from Perceptual Information in Situated Guessing Games
Alessandro Suglia | Antonio Vergari | Ioannis Konstas | Yonatan Bisk | Emanuele Bastianelli | Andrea Vanzo | Oliver Lemon
Proceedings of the 28th International Conference on Computational Linguistics

In visual guessing games, a Guesser has to identify a target object in a scene by asking questions to an Oracle. An effective strategy for the players is to learn conceptual representations of objects that are both discriminative and expressive enough to ask questions and guess correctly. However, as shown by Suglia et al. (2020), existing models fail to learn truly multi-modal representations, relying instead on gold category labels for objects in the scene both at training and inference time. This provides an unnatural performance advantage when categories at inference time match those at training time, and it causes models to fail in more realistic “zero-shot” scenarios where out-of-domain object categories are involved. To overcome this issue, we introduce a novel “imagination” module based on Regularized Auto-Encoders, that learns context-aware and category-aware latent embeddings without relying on category labels at inference time. Our imagination module outperforms state-of-the-art competitors by 8.26% gameplay accuracy in the CompGuessWhat?! zero-shot scenario (Suglia et al., 2020), and it improves the Oracle and Guesser accuracy by 2.08% and 12.86% in the GuessWhat?! benchmark, when no gold categories are available at inference time. The imagination module also boosts reasoning about object properties and attributes.

2019

pdf bib
Proceedings of the 3rd Workshop on Neural Generation and Translation
Alexandra Birch | Andrew Finch | Hiroaki Hayashi | Ioannis Konstas | Thang Luong | Graham Neubig | Yusuke Oda | Katsuhito Sudoh
Proceedings of the 3rd Workshop on Neural Generation and Translation

pdf bib
Findings of the Third Workshop on Neural Generation and Translation
Hiroaki Hayashi | Yusuke Oda | Alexandra Birch | Ioannis Konstas | Andrew Finch | Minh-Thang Luong | Graham Neubig | Katsuhito Sudoh
Proceedings of the 3rd Workshop on Neural Generation and Translation

This document describes the findings of the Third Workshop on Neural Generation and Translation, held in concert with the annual conference of the Empirical Methods in Natural Language Processing (EMNLP 2019). First, we summarize the research trends of papers presented in the proceedings. Second, we describe the results of the two shared tasks 1) efficient neural machine translation (NMT) where participants were tasked with creating NMT systems that are both accurate and efficient, and 2) document generation and translation (DGT) where participants were tasked with developing systems that generate summaries from structured data, potentially with assistance from text in another language.

pdf bib
Corpus of Multimodal Interaction for Collaborative Planning
Miltiadis Marios Katsakioris | Helen Hastie | Ioannis Konstas | Atanas Laskov
Proceedings of the Combined Workshop on Spatial Language Understanding (SpLU) and Grounded Communication for Robotics (RoboNLP)

As autonomous systems become more commonplace, we need a way to easily and naturally communicate to them our goals and collaboratively come up with a plan on how to achieve these goals. To this end, we conducted a Wizard of Oz study to gather data and investigate the way operators would collaboratively make plans via a conversational ‘planning assistant’ for remote autonomous systems. We present here a corpus of 22 dialogs from expert operators, which can be used to train such a system. Data analysis shows that multimodality is key to successful interaction, measured both quantitatively and qualitatively via user feedback.

pdf bib
Automatic Quality Estimation for Natural Language Generation: Ranting (Jointly Rating and Ranking)
Ondřej Dušek | Karin Sevegnani | Ioannis Konstas | Verena Rieser
Proceedings of the 12th International Conference on Natural Language Generation

We present a recurrent neural network based system for automatic quality estimation of natural language generation (NLG) outputs, which jointly learns to assign numerical ratings to individual outputs and to provide pairwise rankings of two different outputs. The latter is trained using pairwise hinge loss over scores from two copies of the rating network. We use learning to rank and synthetic data to improve the quality of ratings assigned by our system: We synthesise training pairs of distorted system outputs and train the system to rank the less distorted one higher. This leads to a 12% increase in correlation with human ratings over the previous benchmark. We also establish the state of the art on the dataset of relative rankings from the E2E NLG Challenge (Dusek et al., 2019), where synthetic data lead to a 4% accuracy increase over the base model.

pdf bib
SEQˆ3: Differentiable Sequence-to-Sequence-to-Sequence Autoencoder for Unsupervised Abstractive Sentence Compression
Christos Baziotis | Ion Androutsopoulos | Ioannis Konstas | Alexandros Potamianos
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Neural sequence-to-sequence models are currently the dominant approach in several natural language processing tasks, but require large parallel corpora. We present a sequence-to-sequence-to-sequence autoencoder (SEQˆ3), consisting of two chained encoder-decoder pairs, with words used as a sequence of discrete latent variables. We apply the proposed model to unsupervised abstractive sentence compression, where the first and last sequences are the input and reconstructed sentences, respectively, while the middle sequence is the compressed sentence. Constraining the length of the latent word sequences forces the model to distill important information from the input. A pretrained language model, acting as a prior over the latent sequences, encourages the compressed sentences to be human-readable. Continuous relaxations enable us to sample from categorical distributions, allowing gradient-based optimization, unlike alternatives that rely on reinforcement learning. The proposed model does not require parallel text-summary pairs, achieving promising results in unsupervised sentence compression on benchmark datasets.

2018

pdf bib
Mapping Language to Code in Programmatic Context
Srinivasan Iyer | Ioannis Konstas | Alvin Cheung | Luke Zettlemoyer
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Source code is rarely written in isolation. It depends significantly on the programmatic context, such as the class that the code would reside in. To study this phenomenon, we introduce the task of generating class member functions given English documentation and the programmatic context provided by the rest of the class. This task is challenging because the desired code can vary greatly depending on the functionality the class provides (e.g., a sort function may or may not be available when we are asked to “return the smallest element” in a particular member variable list). We introduce CONCODE, a new large dataset with over 100,000 examples consisting of Java classes from online code repositories, and develop a new encoder-decoder architecture that models the interaction between the method documentation and the class environment. We also present a detailed error analysis suggesting that there is significant room for future work on this task.

pdf bib
Better Conversations by Modeling, Filtering, and Optimizing for Coherence and Diversity
Xinnuo Xu | Ondřej Dušek | Ioannis Konstas | Verena Rieser
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We present three enhancements to existing encoder-decoder models for open-domain conversational agents, aimed at effectively modeling coherence and promoting output diversity: (1) We introduce a measure of coherence as the GloVe embedding similarity between the dialogue context and the generated response, (2) we filter our training corpora based on the measure of coherence to obtain topically coherent and lexically diverse context-response pairs, (3) we then train a response generator using a conditional variational autoencoder model that incorporates the measure of coherence as a latent variable and uses a context gate to guarantee topical consistency with the context and promote lexical diversity. Experiments on the OpenSubtitles corpus show a substantial improvement over competitive neural models in terms of BLEU score as well as metrics of coherence and diversity.

pdf bib
A Knowledge-Grounded Multimodal Search-Based Conversational Agent
Shubham Agarwal | Ondřej Dušek | Ioannis Konstas | Verena Rieser
Proceedings of the 2018 EMNLP Workshop SCAI: The 2nd International Workshop on Search-Oriented Conversational AI

Multimodal search-based dialogue is a challenging new task: It extends visually grounded question answering systems into multi-turn conversations with access to an external database. We address this new challenge by learning a neural response generation system from the recently released Multimodal Dialogue (MMD) dataset (Saha et al., 2017). We introduce a knowledge-grounded multimodal conversational model where an encoded knowledge base (KB) representation is appended to the decoder input. Our model substantially outperforms strong baselines in terms of text-based similarity measures (over 9 BLEU points, 3 of which are solely due to the use of additional information from the KB).

pdf bib
Improving Context Modelling in Multimodal Dialogue Generation
Shubham Agarwal | Ondřej Dušek | Ioannis Konstas | Verena Rieser
Proceedings of the 11th International Conference on Natural Language Generation

In this work, we investigate the task of textual response generation in a multimodal task-oriented dialogue system. Our work is based on the recently released Multimodal Dialogue (MMD) dataset (Saha et al., 2017) in the fashion domain. We introduce a multimodal extension to the Hierarchical Recurrent Encoder-Decoder (HRED) model and show that this extension outperforms strong baselines in terms of text-based similarity metrics. We also showcase the shortcomings of current vision and language models by performing an error analysis on our system’s output.

2017

pdf bib
Neural AMR: Sequence-to-Sequence Models for Parsing and Generation
Ioannis Konstas | Srinivasan Iyer | Mark Yatskar | Yejin Choi | Luke Zettlemoyer
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Sequence-to-sequence models have shown strong performance across a broad range of applications. However, their application to parsing and generating text using Abstract Meaning Representation (AMR) has been limited, due to the relatively limited amount of labeled data and the non-sequential nature of the AMR graphs. We present a novel training procedure that can lift this limitation using millions of unlabeled sentences and careful preprocessing of the AMR graphs. For AMR parsing, our model achieves competitive results of 62.1 SMATCH, the current best score reported without significant use of external semantic resources. For AMR generation, our model establishes a new state-of-the-art performance of BLEU 33.8. We present extensive ablative and qualitative analysis including strong evidence that sequence-based AMR models are robust against ordering variations of graph-to-sequence conversions.

pdf bib
Learning a Neural Semantic Parser from User Feedback
Srinivasan Iyer | Ioannis Konstas | Alvin Cheung | Jayant Krishnamurthy | Luke Zettlemoyer
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present an approach to rapidly and easily build natural language interfaces to databases for new domains, whose performance improves over time based on user feedback, and requires minimal intervention. To achieve this, we adapt neural sequence models to map utterances directly to SQL with its full expressivity, bypassing any intermediate meaning representations. These models are immediately deployed online to solicit feedback from real users to flag incorrect queries. Finally, the popularity of SQL facilitates gathering annotations for incorrect predictions using the crowd, which is directly used to improve our models. This complete feedback loop, without intermediate representations or database specific engineering, opens up new ways of building high quality semantic parsers. Experiments suggest that this approach can be deployed quickly for any new target domain, as we show by learning a semantic parser for an online academic database from scratch.

pdf bib
The Effect of Different Writing Tasks on Linguistic Style: A Case Study of the ROC Story Cloze Task
Roy Schwartz | Maarten Sap | Ioannis Konstas | Leila Zilles | Yejin Choi | Noah A. Smith
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)

A writer’s style depends not just on personal traits but also on her intent and mental state. In this paper, we show how variants of the same writing task can lead to measurable differences in writing style. We present a case study based on the story cloze task (Mostafazadeh et al., 2016a), where annotators were assigned similar writing tasks with different constraints: (1) writing an entire story, (2) adding a story ending for a given story context, and (3) adding an incoherent ending to a story. We show that a simple linear classifier informed by stylistic features is able to successfully distinguish among the three cases, without even looking at the story context. In addition, combining our stylistic features with language model predictions reaches state of the art performance on the story cloze challenge. Our results demonstrate that different task framings can dramatically affect the way people write.

pdf bib
Story Cloze Task: UW NLP System
Roy Schwartz | Maarten Sap | Ioannis Konstas | Leila Zilles | Yejin Choi | Noah A. Smith
Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics

This paper describes University of Washington NLP’s submission for the Linking Models of Lexical, Sentential and Discourse-level Semantics (LSDSem 2017) shared task—the Story Cloze Task. Our system is a linear classifier with a variety of features, including both the scores of a neural language model and style features. We report 75.2% accuracy on the task. A further discussion of our results can be found in Schwartz et al. (2017).

2016

pdf bib
A Theme-Rewriting Approach for Generating Algebra Word Problems
Rik Koncel-Kedziorski | Ioannis Konstas | Luke Zettlemoyer | Hannaneh Hajishirzi
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Summarizing Source Code using a Neural Attention Model
Srinivasan Iyer | Ioannis Konstas | Alvin Cheung | Luke Zettlemoyer
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf bib
Semantic Role Labeling Improves Incremental Parsing
Ioannis Konstas | Frank Keller
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

2014

pdf bib
Incremental Semantic Role Labeling with Tree Adjoining Grammar
Ioannis Konstas | Frank Keller | Vera Demberg | Mirella Lapata
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

2013

pdf bib
Automatically Detecting and Attributing Indirect Quotations
Silvia Pareti | Tim O’Keefe | Ioannis Konstas | James R. Curran | Irena Koprinska
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
Inducing Document Plans for Concept-to-Text Generation
Ioannis Konstas | Mirella Lapata
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

2012

pdf bib
Unsupervised Concept-to-text Generation with Hypergraphs
Ioannis Konstas | Mirella Lapata
Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Concept-to-text Generation via Discriminative Reranking
Ioannis Konstas | Mirella Lapata
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2009

pdf bib
User Simulations for Context-Sensitive Speech Recognition in Spoken Dialogue Systems
Oliver Lemon | Ioannis Konstas
Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009)