Hsien-chin Lin


2020

pdf bib
Knowing What You Know: Calibrating Dialogue Belief State Distributions via Ensembles
Carel van Niekerk | Michael Heck | Christian Geishauser | Hsien-chin Lin | Nurul Lubis | Marco Moresi | Milica Gasic
Findings of the Association for Computational Linguistics: EMNLP 2020

The ability to accurately track what happens during a conversation is essential for the performance of a dialogue system. Current state-of-the-art multi-domain dialogue state trackers achieve just over 55% accuracy on the current go-to benchmark, which means that in almost every second dialogue turn they place full confidence in an incorrect dialogue state. Belief trackers, on the other hand, maintain a distribution over possible dialogue states. However, they lack in performance compared to dialogue state trackers, and do not produce well calibrated distributions. In this work we present state-of-the-art performance in calibration for multi-domain dialogue belief trackers using a calibrated ensemble of models. Our resulting dialogue belief tracker also outperforms previous dialogue belief tracking models in terms of accuracy.

pdf bib
LAVA: Latent Action Spaces via Variational Auto-encoding for Dialogue Policy Optimization
Nurul Lubis | Christian Geishauser | Michael Heck | Hsien-chin Lin | Marco Moresi | Carel van Niekerk | Milica Gasic
Proceedings of the 28th International Conference on Computational Linguistics

Reinforcement learning (RL) can enable task-oriented dialogue systems to steer the conversation towards successful task completion. In an end-to-end setting, a response can be constructed in a word-level sequential decision making process with the entire system vocabulary as action space. Policies trained in such a fashion do not require expert-defined action spaces, but they have to deal with large action spaces and long trajectories, making RL impractical. Using the latent space of a variational model as action space alleviates this problem. However, current approaches use an uninformed prior for training and optimize the latent distribution solely on the context. It is therefore unclear whether the latent representation truly encodes the characteristics of different actions. In this paper, we explore three ways of leveraging an auxiliary task to shape the latent variable distribution: via pre-training, to obtain an informed prior, and via multitask learning. We choose response auto-encoding as the auxiliary task, as this captures the generative factors of dialogue responses while requiring low computational cost and neither additional data nor labels. Our approach yields a more action-characterized latent representations which support end-to-end dialogue policy optimization and achieves state-of-the-art success rates. These results warrant a more wide-spread use of RL in end-to-end dialogue models.

pdf bib
Out-of-Task Training for Dialog State Tracking Models
Michael Heck | Christian Geishauser | Hsien-chin Lin | Nurul Lubis | Marco Moresi | Carel van Niekerk | Milica Gasic
Proceedings of the 28th International Conference on Computational Linguistics

Dialog state tracking (DST) suffers from severe data sparsity. While many natural language processing (NLP) tasks benefit from transfer learning and multi-task learning, in dialog these methods are limited by the amount of available data and by the specificity of dialog applications. In this work, we successfully utilize non-dialog data from unrelated NLP tasks to train dialog state trackers. This opens the door to the abundance of unrelated NLP corpora to mitigate the data sparsity issue inherent to DST.