Hongyu Gong


pdf bib
Enriching Word Embeddings with Temporal and Spatial Information
Hongyu Gong | Suma Bhat | Pramod Viswanath
Proceedings of the 24th Conference on Computational Natural Language Learning

The meaning of a word is closely linked to sociocultural factors that can change over time and location, resulting in corresponding meaning changes. Taking a global view of words and their meanings in a widely used language, such as English, may require us to capture more refined semantics for use in time-specific or location-aware situations, such as the study of cultural trends or language use. However, popular vector representations for words do not adequately include temporal or spatial information. In this work, we present a model for learning word representation conditioned on time and location. In addition to capturing meaning changes over time and location, we require that the resulting word embeddings retain salient semantic and geometric properties. We train our model on time- and location-stamped corpora, and show using both quantitative and qualitative evaluations that it can capture semantics across time and locations. We note that our model compares favorably with the state-of-the-art for time-specific embedding, and serves as a new benchmark for location-specific embeddings.

pdf bib
Recurrent Chunking Mechanisms for Long-Text Machine Reading Comprehension
Hongyu Gong | Yelong Shen | Dian Yu | Jianshu Chen | Dong Yu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In this paper, we study machine reading comprehension (MRC) on long texts: where a model takes as inputs a lengthy document and a query, extracts a text span from the document as an answer. State-of-the-art models (e.g., BERT) tend to use a stack of transformer layers that are pre-trained from a large number of unlabeled language corpora to encode the joint contextual information of query and document. However, these transformer models can only take as input a fixed-length (e.g., 512) text. To deal with even longer text inputs, previous approaches usually chunk them into equally-spaced segments and predict answers based on each segment independently without considering the information from other segments. As a result, they may form segments that fail to cover complete answers or retain insufficient contexts around the correct answer required for question answering. Moreover, they are less capable of answering questions that need cross-segment information. We propose to let a model learn to chunk in a more flexible way via reinforcement learning: a model can decide the next segment that it wants to process in either direction. We also apply recurrent mechanisms to enable information to flow across segments. Experiments on three MRC tasks – CoQA, QuAC, and TriviaQA – demonstrate the effectiveness of our proposed recurrent chunking mechanisms: we can obtain segments that are more likely to contain complete answers and at the same time provide sufficient contexts around the ground truth answers for better predictions.

pdf bib
Rich Syntactic and Semantic Information Helps Unsupervised Text Style Transfer
Hongyu Gong | Linfeng Song | Suma Bhat
Proceedings of the 13th International Conference on Natural Language Generation

Text style transfer aims to change an input sentence to an output sentence by changing its text style while preserving the content. Previous efforts on unsupervised text style transfer only use the surface features of words and sentences. As a result, the transferred sentences may either have inaccurate or missing information compared to the inputs. We address this issue by explicitly enriching the inputs via syntactic and semantic structures, from which richer features are then extracted to better capture the original information. Experiments on two text-style-transfer tasks show that our approach improves the content preservation of a strong unsupervised baseline model thereby demonstrating improved transfer performance.

pdf bib
IlliniMet: Illinois System for Metaphor Detection with Contextual and Linguistic Information
Hongyu Gong | Kshitij Gupta | Akriti Jain | Suma Bhat
Proceedings of the Second Workshop on Figurative Language Processing

Metaphors are rhetorical use of words based on the conceptual mapping as opposed to their literal use. Metaphor detection, an important task in language understanding, aims to identify metaphors in word level from given sentences. We present IlliniMet, a system to automatically detect metaphorical words. Our model combines the strengths of the contextualized representation by the widely used RoBERTa model and the rich linguistic information from external resources such as WordNet. The proposed approach is shown to outperform strong baselines on a benchmark dataset. Our best model achieves F1 scores of 73.0% on VUA ALLPOS, 77.1% on VUA VERB, 70.3% on TOEFL ALLPOS and 71.9% on TOEFL VERB.


pdf bib
PaRe: A Paper-Reviewer Matching Approach Using a Common Topic Space
Omer Anjum | Hongyu Gong | Suma Bhat | Wen-Mei Hwu | JinJun Xiong
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Finding the right reviewers to assess the quality of conference submissions is a time consuming process for conference organizers. Given the importance of this step, various automated reviewer-paper matching solutions have been proposed to alleviate the burden. Prior approaches including bag-of-words model and probabilistic topic model are less effective to deal with the vocabulary mismatch and partial topic overlap between the submission and reviewer. Our approach, the common topic model, jointly models the topics common to the submission and the reviewer’s profile while relying on abstract topic vectors. Experiments and insightful evaluations on two datasets demonstrate that the proposed method achieves consistent improvements compared to the state-of-the-art.

pdf bib
Equipping Educational Applications with Domain Knowledge
Tarek Sakakini | Hongyu Gong | Jong Yoon Lee | Robert Schloss | JinJun Xiong | Suma Bhat
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications

One of the challenges of building natural language processing (NLP) applications for education is finding a large domain-specific corpus for the subject of interest (e.g., history or science). To address this challenge, we propose a tool, Dexter, that extracts a subject-specific corpus from a heterogeneous corpus, such as Wikipedia, by relying on a small seed corpus and distributed document representations. We empirically show the impact of the generated corpus on language modeling, estimating word embeddings, and consequently, distractor generation, resulting in better performances than while using a general domain corpus, a heuristically constructed domain-specific corpus, and a corpus generated by a popular system: BootCaT.

pdf bib
Reinforcement Learning Based Text Style Transfer without Parallel Training Corpus
Hongyu Gong | Suma Bhat | Lingfei Wu | JinJun Xiong | Wen-mei Hwu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Text style transfer rephrases a text from a source style (e.g., informal) to a target style (e.g., formal) while keeping its original meaning. Despite the success existing works have achieved using a parallel corpus for the two styles, transferring text style has proven significantly more challenging when there is no parallel training corpus. In this paper, we address this challenge by using a reinforcement-learning-based generator-evaluator architecture. Our generator employs an attention-based encoder-decoder to transfer a sentence from the source style to the target style. Our evaluator is an adversarially trained style discriminator with semantic and syntactic constraints that score the generated sentence for style, meaning preservation, and fluency. Experimental results on two different style transfer tasks–sentiment transfer, and formality transfer–show that our model outperforms state-of-the-art approaches.Furthermore, we perform a manual evaluation that demonstrates the effectiveness of the proposed method using subjective metrics of generated text quality.


pdf bib
Embedding Syntax and Semantics of Prepositions via Tensor Decomposition
Hongyu Gong | Suma Bhat | Pramod Viswanath
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Prepositions are among the most frequent words in English and play complex roles in the syntax and semantics of sentences. Not surprisingly, they pose well-known difficulties in automatic processing of sentences (prepositional attachment ambiguities and idiosyncratic uses in phrases). Existing methods on preposition representation treat prepositions no different from content words (e.g., word2vec and GloVe). In addition, recent studies aiming at solving prepositional attachment and preposition selection problems depend heavily on external linguistic resources and use dataset-specific word representations. In this paper we use word-triple counts (one of the triples being a preposition) to capture a preposition’s interaction with its attachment and complement. We then derive preposition embeddings via tensor decomposition on a large unlabeled corpus. We reveal a new geometry involving Hadamard products and empirically demonstrate its utility in paraphrasing phrasal verbs. Furthermore, our preposition embeddings are used as simple features in two challenging downstream tasks: preposition selection and prepositional attachment disambiguation. We achieve results comparable to or better than the state-of-the-art on multiple standardized datasets.

pdf bib
Preposition Sense Disambiguation and Representation
Hongyu Gong | Jiaqi Mu | Suma Bhat | Pramod Viswanath
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Prepositions are highly polysemous, and their variegated senses encode significant semantic information. In this paper we match each preposition’s left- and right context, and their interplay to the geometry of the word vectors to the left and right of the preposition. Extracting these features from a large corpus and using them with machine learning models makes for an efficient preposition sense disambiguation (PSD) algorithm, which is comparable to and better than state-of-the-art on two benchmark datasets. Our reliance on no linguistic tool allows us to scale the PSD algorithm to a large corpus and learn sense-specific preposition representations. The crucial abstraction of preposition senses as word representations permits their use in downstream applications–phrasal verb paraphrasing and preposition selection–with new state-of-the-art results.

pdf bib
Document Similarity for Texts of Varying Lengths via Hidden Topics
Hongyu Gong | Tarek Sakakini | Suma Bhat | JinJun Xiong
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Measuring similarity between texts is an important task for several applications. Available approaches to measure document similarity are inadequate for document pairs that have non-comparable lengths, such as a long document and its summary. This is because of the lexical, contextual and the abstraction gaps between a long document of rich details and its concise summary of abstract information. In this paper, we present a document matching approach to bridge this gap, by comparing the texts in a common space of hidden topics. We evaluate the matching algorithm on two matching tasks and find that it consistently and widely outperforms strong baselines. We also highlight the benefits of the incorporation of domain knowledge to text matching.