Haoming Jiang


pdf bib
Multi-Domain Neural Machine Translation with Word-Level Adaptive Layer-wise Domain Mixing
Haoming Jiang | Chen Liang | Chong Wang | Tuo Zhao
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Many multi-domain neural machine translation (NMT) models achieve knowledge transfer by enforcing one encoder to learn shared embedding across domains. However, this design lacks adaptation to individual domains. To overcome this limitation, we propose a novel multi-domain NMT model using individual modules for each domain, on which we apply word-level, adaptive and layer-wise domain mixing. We first observe that words in a sentence are often related to multiple domains. Hence, we assume each word has a domain proportion, which indicates its domain preference. Then word representations are obtained by mixing their embedding in individual domains based on their domain proportions. We show this can be achieved by carefully designing multi-head dot-product attention modules for different domains, and eventually taking weighted averages of their parameters by word-level layer-wise domain proportions. Through this, we can achieve effective domain knowledge sharing and capture fine-grained domain-specific knowledge as well. Our experiments show that our proposed model outperforms existing ones in several NMT tasks.

pdf bib
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization
Haoming Jiang | Pengcheng He | Weizhu Chen | Xiaodong Liu | Jianfeng Gao | Tuo Zhao
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Transfer learning has fundamentally changed the landscape of natural language processing (NLP). Many state-of-the-art models are first pre-trained on a large text corpus and then fine-tuned on downstream tasks. However, due to limited data resources from downstream tasks and the extremely high complexity of pre-trained models, aggressive fine-tuning often causes the fine-tuned model to overfit the training data of downstream tasks and fail to generalize to unseen data. To address such an issue in a principled manner, we propose a new learning framework for robust and efficient fine-tuning for pre-trained models to attain better generalization performance. The proposed framework contains two important ingredients: 1. Smoothness-inducing regularization, which effectively manages the complexity of the model; 2. Bregman proximal point optimization, which is an instance of trust-region methods and can prevent aggressive updating. Our experiments show that the proposed framework achieves new state-of-the-art performance on a number of NLP tasks including GLUE, SNLI, SciTail and ANLI. Moreover, it also outperforms the state-of-the-art T5 model, which is the largest pre-trained model containing 11 billion parameters, on GLUE.

pdf bib
Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data
Lingkai Kong | Haoming Jiang | Yuchen Zhuang | Jie Lyu | Tuo Zhao | Chao Zhang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Fine-tuned pre-trained language models can suffer from severe miscalibration for both in-distribution and out-of-distribution (OOD) data due to over-parameterization. To mitigate this issue, we propose a regularized fine-tuning method. Our method introduces two types of regularization for better calibration: (1) On-manifold regularization, which generates pseudo on-manifold samples through interpolation within the data manifold. Augmented training with these pseudo samples imposes a smoothness regularization to improve in-distribution calibration. (2) Off-manifold regularization, which encourages the model to output uniform distributions for pseudo off-manifold samples to address the over-confidence issue for OOD data. Our experiments demonstrate that the proposed method outperforms existing calibration methods for text classification in terms of expectation calibration error, misclassification detection, and OOD detection on six datasets. Our code can be found at https://github.com/Lingkai-Kong/Calibrated-BERT-Fine-Tuning.


pdf bib
Contextual Text Denoising with Masked Language Model
Yifu Sun | Haoming Jiang
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

Recently, with the help of deep learning models, significant advances have been made in different Natural Language Processing (NLP) tasks. Unfortunately, state-of-the-art models are vulnerable to noisy texts. We propose a new contextual text denoising algorithm based on the ready-to-use masked language model. The proposed algorithm does not require retraining of the model and can be integrated into any NLP system without additional training on paired cleaning training data. We evaluate our method under synthetic noise and natural noise and show that the proposed algorithm can use context information to correct noise text and improve the performance of noisy inputs in several downstream tasks.