Hao Yang


pdf bib
The HW-TSC Video Speech Translation System at IWSLT 2020
Minghan Wang | Hao Yang | Yao Deng | Ying Qin | Lizhi Lei | Daimeng Wei | Hengchao Shang | Ning Xie | Xiaochun Li | Jiaxian Guo
Proceedings of the 17th International Conference on Spoken Language Translation

The paper presents details of our system in the IWSLT Video Speech Translation evaluation. The system works in a cascade form, which contains three modules: 1) A proprietary ASR system. 2) A disfluency correction system aims to remove interregnums or other disfluent expressions with a fine-tuned BERT and a series of rule-based algorithms. 3) An NMT System based on the Transformer and trained with massive publicly available corpus.

pdf bib
Modelling Long-distance Node Relations for KBQA with Global Dynamic Graph
Xu Wang | Shuai Zhao | Jiale Han | Bo Cheng | Hao Yang | Jianchang Ao | Zhenzi Li
Proceedings of the 28th International Conference on Computational Linguistics

The structural information of Knowledge Bases (KBs) has proven effective to Question Answering (QA). Previous studies rely on deep graph neural networks (GNNs) to capture rich structural information, which may not model node relations in particularly long distance due to oversmoothing issue. To address this challenge, we propose a novel framework GlobalGraph, which models long-distance node relations from two views: 1) Node type similarity: GlobalGraph assigns each node a global type label and models long-distance node relations through the global type label similarity; 2) Correlation between nodes and questions: we learn similarity scores between nodes and the question, and model long-distance node relations through the sum score of two nodes. We conduct extensive experiments on two widely used multi-hop KBQA datasets to prove the effectiveness of our method.

pdf bib
Efficient Transfer Learning for Quality Estimation with Bottleneck Adapter Layer
Hao Yang | Minghan Wang | Ning Xie | Ying Qin | Yao Deng
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

The Predictor-Estimator framework for quality estimation (QE) is commonly used for its strong performance. Where the predictor and estimator works on feature extraction and quality evaluation, respectively. However, training the predictor from scratch is computationally expensive. In this paper, we propose an efficient transfer learning framework to transfer knowledge from NMT dataset into QE models. A Predictor-Estimator alike model named BAL-QE is also proposed, aiming to extract high quality features with pre-trained NMT model, and make classification with a fine-tuned Bottleneck Adapter Layer (BAL). The experiment shows that BAL-QE achieves 97% of the SOTA performance in WMT19 En-De and En-Ru QE tasks by only training 3% of parameters within 4 hours on 4 Titan XP GPUs. Compared with the commonly used NuQE baseline, BAL-QE achieves 47% (En-Ru) and 75% (En-De) of performance promotions.

pdf bib
Unified Humor Detection Based on Sentence-pair Augmentation and Transfer Learning
Minghan Wang | Hao Yang | Ying Qin | Shiliang Sun | Yao Deng
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

We propose a unified multilingual model for humor detection which can be trained under a transfer learning framework. 1) The model is built based on pre-trained multilingual BERT, thereby is able to make predictions on Chinese, Russian and Spanish corpora. 2) We step out from single sentence classification and propose sequence-pair prediction which considers the inter-sentence relationship. 3) We propose the Sentence Discrepancy Prediction (SDP) loss, aiming to measure the semantic discrepancy of the sequence-pair, which often appears in the setup and punchline of a joke. Our method achieves two SoTA and a second-place on three humor detection corpora in three languages (Russian, Spanish and Chinese), and also improves F1-score by 4%-6%, which demonstrates the effectiveness of it in humor detection tasks.


pdf bib
An End-to-End Multi-task Learning Model for Fact Checking
Sizhen Li | Shuai Zhao | Bo Cheng | Hao Yang
Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)

With huge amount of information generated every day on the web, fact checking is an important and challenging task which can help people identify the authenticity of most claims as well as providing evidences selected from knowledge source like Wikipedia. Here we decompose this problem into two parts: an entity linking task (retrieving relative Wikipedia pages) and recognizing textual entailment between the claim and selected pages. In this paper, we present an end-to-end multi-task learning with bi-direction attention (EMBA) model to classify the claim as “supports”, “refutes” or “not enough info” with respect to the pages retrieved and detect sentences as evidence at the same time. We conduct experiments on the FEVER (Fact Extraction and VERification) paper test dataset and shared task test dataset, a new public dataset for verification against textual sources. Experimental results show that our method achieves comparable performance compared with the baseline system.