Hao He


2020

pdf bib
A Semantically Consistent and Syntactically Variational Encoder-Decoder Framework for Paraphrase Generation
Wenqing Chen | Jidong Tian | Liqiang Xiao | Hao He | Yaohui Jin
Proceedings of the 28th International Conference on Computational Linguistics

Paraphrase generation aims to generate semantically consistent sentences with different syntactic realizations. Most of the recent studies rely on the typical encoder-decoder framework where the generation process is deterministic. However, in practice, the ability to generate multiple syntactically different paraphrases is important. Recent work proposed to cooperate variational inference on a target-related latent variable to introduce the diversity. But the latent variable may be contaminated by the semantic information of other unrelated sentences, and in turn, change the conveyed meaning of generated paraphrases. In this paper, we propose a semantically consistent and syntactically variational encoder-decoder framework, which uses adversarial learning to ensure the syntactic latent variable be semantic-free. Moreover, we adopt another discriminator to improve the word-level and sentence-level semantic consistency. So the proposed framework can generate multiple semantically consistent and syntactically different paraphrases. The experiments show that our model outperforms the baseline models on the metrics based on both n-gram matching and semantic similarity, and our model can generate multiple different paraphrases by assembling different syntactic variables.

pdf bib
Exploring Logically Dependent Multi-task Learning with Causal Inference
Wenqing Chen | Jidong Tian | Liqiang Xiao | Hao He | Yaohui Jin
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Previous studies have shown that hierarchical multi-task learning (MTL) can utilize task dependencies by stacking encoders and outperform democratic MTL. However, stacking encoders only considers the dependencies of feature representations and ignores the label dependencies in logically dependent tasks. Furthermore, how to properly utilize the labels remains an issue due to the cascading errors between tasks. In this paper, we view logically dependent MTL from the perspective of causal inference and suggest a mediation assumption instead of the confounding assumption in conventional MTL models. We propose a model including two key mechanisms: label transfer (LT) for each task to utilize the labels of all its lower-level tasks, and Gumbel sampling (GS) to deal with cascading errors. In the field of causal inference, GS in our model is essentially a counterfactual reasoning process, trying to estimate the causal effect between tasks and utilize it to improve MTL. We conduct experiments on two English datasets and one Chinese dataset. Experiment results show that our model achieves state-of-the-art on six out of seven subtasks and improves predictions’ consistency.

pdf bib
Modeling Content Importance for Summarization with Pre-trained Language Models
Liqiang Xiao | Lu Wang | Hao He | Yaohui Jin
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Modeling content importance is an essential yet challenging task for summarization. Previous work is mostly based on statistical methods that estimate word-level salience, which does not consider semantics and larger context when quantifying importance. It is thus hard for these methods to generalize to semantic units of longer text spans. In this work, we apply information theory on top of pre-trained language models and define the concept of importance from the perspective of information amount. It considers both the semantics and context when evaluating the importance of each semantic unit. With the help of pre-trained language models, it can easily generalize to different kinds of semantic units n-grams or sentences. Experiments on CNN/Daily Mail and New York Times datasets demonstrate that our method can better model the importance of content than prior work based on F1 and ROUGE scores.