Han Zhang


2019

pdf bib
Multimodal, Multilingual Grapheme-to-Phoneme Conversion for Low-Resource Languages
James Route | Steven Hillis | Isak Czeresnia Etinger | Han Zhang | Alan W Black
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)

Grapheme-to-phoneme conversion (g2p) is the task of predicting the pronunciation of words from their orthographic representation. His- torically, g2p systems were transition- or rule- based, making generalization beyond a mono- lingual (high resource) domain impractical. Recently, neural architectures have enabled multilingual systems to generalize widely; however, all systems to date have been trained only on spelling-pronunciation pairs. We hy- pothesize that the sequences of IPA characters used to represent pronunciation do not capture its full nuance, especially when cleaned to fa- cilitate machine learning. We leverage audio data as an auxiliary modality in a multi-task training process to learn a more optimal inter- mediate representation of source graphemes; this is the first multimodal model proposed for multilingual g2p. Our approach is highly ef- fective: on our in-domain test set, our mul- timodal model reduces phoneme error rate to 2.46%, a more than 65% decrease compared to our implementation of a unimodal spelling- pronunciation model—which itself achieves state-of-the-art results on the Wiktionary test set. The advantages of the multimodal model generalize to wholly unseen languages, reduc- ing phoneme error rate on our out-of-domain test set to 6.39% from the unimodal 8.21%, a more than 20% relative decrease. Further- more, our training and test sets are composed primarily of low-resource languages, demon- strating that our multimodal approach remains useful when training data are constrained.

2018

pdf bib
A Teacher-Student Framework for Maintainable Dialog Manager
Weikang Wang | Jiajun Zhang | Han Zhang | Mei-Yuh Hwang | Chengqing Zong | Zhifei Li
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Reinforcement learning (RL) is an attractive solution for task-oriented dialog systems. However, extending RL-based systems to handle new intents and slots requires a system redesign. The high maintenance cost makes it difficult to apply RL methods to practical systems on a large scale. To address this issue, we propose a practical teacher-student framework to extend RL-based dialog systems without retraining from scratch. Specifically, the “student” is an extended dialog manager based on a new ontology, and the “teacher” is existing resources used for guiding the learning process of the “student”. By specifying constraints held in the new dialog manager, we transfer knowledge of the “teacher” to the “student” without additional resources. Experiments show that the performance of the extended system is comparable to the system trained from scratch. More importantly, the proposed framework makes no assumption about the unsupported intents and slots, which makes it possible to improve RL-based systems incrementally.