Hai Ye


2020

pdf bib
Feature Adaptation of Pre-Trained Language Models across Languages and Domains with Robust Self-Training
Hai Ye | Qingyu Tan | Ruidan He | Juntao Li | Hwee Tou Ng | Lidong Bing
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Adapting pre-trained language models (PrLMs) (e.g., BERT) to new domains has gained much attention recently. Instead of fine-tuning PrLMs as done in most previous work, we investigate how to adapt the features of PrLMs to new domains without fine-tuning. We explore unsupervised domain adaptation (UDA) in this paper. With the features from PrLMs, we adapt the models trained with labeled data from the source domain to the unlabeled target domain. Self-training is widely used for UDA, and it predicts pseudo labels on the target domain data for training. However, the predicted pseudo labels inevitably include noise, which will negatively affect training a robust model. To improve the robustness of self-training, in this paper we present class-aware feature self-distillation (CFd) to learn discriminative features from PrLMs, in which PrLM features are self-distilled into a feature adaptation module and the features from the same class are more tightly clustered. We further extend CFd to a cross-language setting, in which language discrepancy is studied. Experiments on two monolingual and multilingual Amazon review datasets show that CFd can consistently improve the performance of self-training in cross-domain and cross-language settings.

2019

pdf bib
Jointly Learning Semantic Parser and Natural Language Generator via Dual Information Maximization
Hai Ye | Wenjie Li | Lu Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Semantic parsing aims to transform natural language (NL) utterances into formal meaning representations (MRs), whereas an NL generator achieves the reverse: producing an NL description for some given MRs. Despite this intrinsic connection, the two tasks are often studied separately in prior work. In this paper, we model the duality of these two tasks via a joint learning framework, and demonstrate its effectiveness of boosting the performance on both tasks. Concretely, we propose a novel method of dual information maximization (DIM) to regularize the learning process, where DIM empirically maximizes the variational lower bounds of expected joint distributions of NL and MRs. We further extend DIM to a semi-supervision setup (SemiDIM), which leverages unlabeled data of both tasks. Experiments on three datasets of dialogue management and code generation (and summarization) show that performance on both semantic parsing and NL generation can be consistently improved by DIM, in both supervised and semi-supervised setups.

2018

pdf bib
Interpretable Charge Predictions for Criminal Cases: Learning to Generate Court Views from Fact Descriptions
Hai Ye | Xin Jiang | Zhunchen Luo | Wenhan Chao
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

In this paper, we propose to study the problem of court view generation from the fact description in a criminal case. The task aims to improve the interpretability of charge prediction systems and help automatic legal document generation. We formulate this task as a text-to-text natural language generation (NLG) problem. Sequence-to-sequence model has achieved cutting-edge performances in many NLG tasks. However, due to the non-distinctions of fact descriptions, it is hard for Seq2Seq model to generate charge-discriminative court views. In this work, we explore charge labels to tackle this issue. We propose a label-conditioned Seq2Seq model with attention for this problem, to decode court views conditioned on encoded charge labels. Experimental results show the effectiveness of our method.

pdf bib
Semi-Supervised Learning for Neural Keyphrase Generation
Hai Ye | Lu Wang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We study the problem of generating keyphrases that summarize the key points for a given document. While sequence-to-sequence (seq2seq) models have achieved remarkable performance on this task (Meng et al., 2017), model training often relies on large amounts of labeled data, which is only applicable to resource-rich domains. In this paper, we propose semi-supervised keyphrase generation methods by leveraging both labeled data and large-scale unlabeled samples for learning. Two strategies are proposed. First, unlabeled documents are first tagged with synthetic keyphrases obtained from unsupervised keyphrase extraction methods or a self-learning algorithm, and then combined with labeled samples for training. Furthermore, we investigate a multi-task learning framework to jointly learn to generate keyphrases as well as the titles of the articles. Experimental results show that our semi-supervised learning-based methods outperform a state-of-the-art model trained with labeled data only.

pdf bib
Interpretable Rationale Augmented Charge Prediction System
Xin Jiang | Hai Ye | Zhunchen Luo | WenHan Chao | Wenjia Ma
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations

This paper proposes a neural based system to solve the essential interpretability problem existing in text classification, especially in charge prediction task. First, we use a deep reinforcement learning method to extract rationales which mean short, readable and decisive snippets from input text. Then a rationale augmented classification model is proposed to elevate the prediction accuracy. Naturally, the extracted rationales serve as the introspection explanation for the prediction result of the model, enhancing the transparency of the model. Experimental results demonstrate that our system is able to extract readable rationales in a high consistency with manual annotation and is comparable with the attention model in prediction accuracy.

2017

pdf bib
Jointly Extracting Relations with Class Ties via Effective Deep Ranking
Hai Ye | Wenhan Chao | Zhunchen Luo | Zhoujun Li
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Connections between relations in relation extraction, which we call class ties, are common. In distantly supervised scenario, one entity tuple may have multiple relation facts. Exploiting class ties between relations of one entity tuple will be promising for distantly supervised relation extraction. However, previous models are not effective or ignore to model this property. In this work, to effectively leverage class ties, we propose to make joint relation extraction with a unified model that integrates convolutional neural network (CNN) with a general pairwise ranking framework, in which three novel ranking loss functions are introduced. Additionally, an effective method is presented to relieve the severe class imbalance problem from NR (not relation) for model training. Experiments on a widely used dataset show that leveraging class ties will enhance extraction and demonstrate the effectiveness of our model to learn class ties. Our model outperforms the baselines significantly, achieving state-of-the-art performance.