Georgiy Platonov


pdf bib
A Spoken Dialogue System for Spatial Question Answering in a Physical Blocks World
Georgiy Platonov | Lenhart Schubert | Benjamin Kane | Aaron Gindi
Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue

A physical blocks world, despite its relative simplicity, requires (in fully interactive form) a rich set of functional capabilities, ranging from vision to natural language understanding. In this work we tackle spatial question answering in a holistic way, using a vision system, speech input and output mediated by an animated avatar, a dialogue system that robustly interprets spatial queries, and a constraint solver that derives answers based on 3-D spatial modeling. The contributions of this work include a semantic parser that maps spatial questions into logical forms consistent with a general approach to meaning representation, a dialogue manager based on a schema representation, and a constraint solver for spatial questions that provides answers in agreement with human perception. These and other components are integrated into a multi-modal human-computer interaction pipeline.


pdf bib
Generating Discourse Inferences from Unscoped Episodic Logical Formulas
Gene Kim | Benjamin Kane | Viet Duong | Muskaan Mendiratta | Graeme McGuire | Sophie Sackstein | Georgiy Platonov | Lenhart Schubert
Proceedings of the First International Workshop on Designing Meaning Representations

Abstract Unscoped episodic logical form (ULF) is a semantic representation capturing the predicate-argument structure of English within the episodic logic formalism in relation to the syntactic structure, while leaving scope, word sense, and anaphora unresolved. We describe how ULF can be used to generate natural language inferences that are grounded in the semantic and syntactic structure through a small set of rules defined over interpretable predicates and transformations on ULFs. The semantic restrictions placed by ULF semantic types enables us to ensure that the inferred structures are semantically coherent while the nearness to syntax enables accurate mapping to English. We demonstrate these inferences on four classes of conversationally-oriented inferences in a mixed genre dataset with 68.5% precision from human judgments.


pdf bib
Computational Models for Spatial Prepositions
Georgiy Platonov | Lenhart Schubert
Proceedings of the First International Workshop on Spatial Language Understanding

Developing computational models of spatial prepositions (such as on, in, above, etc.) is crucial for such tasks as human-machine collaboration, story understanding, and 3D model generation from descriptions. However, these prepositions are notoriously vague and ambiguous, with meanings depending on the types, shapes and sizes of entities in the argument positions, the physical and task context, and other factors. As a result truth value judgments for prepositional relations are often uncertain and variable. In this paper we treat the modeling task as calling for assignment of probabilities to such relations as a function of multiple factors, where such probabilities can be viewed as estimates of whether humans would judge the relations to hold in given circumstances. We implemented our models in a 3D blocks world and a room world in a computer graphics setting, and found that true/false judgments based on these models do not differ much more from human judgments that the latter differ from one another. However, what really matters pragmatically is not the accuracy of truth value judgments but whether, for instance, the computer models suffice for identifying objects described in terms of prepositional relations, (e.g., “the box to the left of the table”, where there are multiple boxes). For such tasks, our models achieved accuracies above 90% for most relations.