Geoff Bacon


pdf bib
Data-driven Choices in Neural Part-of-Speech Tagging for Latin
Geoff Bacon
Proceedings of LT4HALA 2020 - 1st Workshop on Language Technologies for Historical and Ancient Languages

Textual data in ancient and historical languages such as Latin is increasingly available in machine readable forms, yet computational tools to analyze and process this data are still lacking. We describe our system for part-of-speech tagging in Latin, an entry in the EvaLatin 2020 shared task. Based on a detailed analysis of the training data, we make targeted preprocessing decisions and design our model. We leverage existing large unlabelled resources to pre-train representations at both the grapheme and word level, which serve as the inputs to our LSTM-based models. We perform an extensive cross-validated hyperparameter search, achieving an accuracy score of up to 93 on in-domain texts. We publicly release all our code and trained models in the hope that our system will be of use to social scientists and digital humanists alike. The insights we draw from our inital analysis can also inform future NLP work modeling syntactic information in Latin.


pdf bib
Probing sentence embeddings for structure-dependent tense
Geoff Bacon | Terry Regier
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

Learning universal sentence representations which accurately model sentential semantic content is a current goal of natural language processing research. A prominent and successful approach is to train recurrent neural networks (RNNs) to encode sentences into fixed length vectors. Many core linguistic phenomena that one would like to model in universal sentence representations depend on syntactic structure. Despite the fact that RNNs do not have explicit syntactic structural representations, there is some evidence that RNNs can approximate such structure-dependent phenomena under certain conditions, in addition to their widespread success in practical tasks. In this work, we assess RNNs’ ability to learn the structure-dependent phenomenon of main clause tense.