Gaurav Sahu


pdf bib
Generation of lyrics lines conditioned on music audio clips
Olga Vechtomova | Gaurav Sahu | Dhruv Kumar
Proceedings of the 1st Workshop on NLP for Music and Audio (NLP4MusA)

pdf bib
Adversarial Learning on the Latent Space for Diverse Dialog Generation
Kashif Khan | Gaurav Sahu | Vikash Balasubramanian | Lili Mou | Olga Vechtomova
Proceedings of the 28th International Conference on Computational Linguistics

Generating relevant responses in a dialog is challenging, and requires not only proper modeling of context in the conversation, but also being able to generate fluent sentences during inference. In this paper, we propose a two-step framework based on generative adversarial nets for generating conditioned responses. Our model first learns a meaningful representation of sentences by autoencoding, and then learns to map an input query to the response representation, which is in turn decoded as a response sentence. Both quantitative and qualitative evaluations show that our model generates more fluent, relevant, and diverse responses than existing state-of-the-art methods.


pdf bib
Free as in Free Word Order: An Energy Based Model for Word Segmentation and Morphological Tagging in Sanskrit
Amrith Krishna | Bishal Santra | Sasi Prasanth Bandaru | Gaurav Sahu | Vishnu Dutt Sharma | Pavankumar Satuluri | Pawan Goyal
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

The configurational information in sentences of a free word order language such as Sanskrit is of limited use. Thus, the context of the entire sentence will be desirable even for basic processing tasks such as word segmentation. We propose a structured prediction framework that jointly solves the word segmentation and morphological tagging tasks in Sanskrit. We build an energy based model where we adopt approaches generally employed in graph based parsing techniques (McDonald et al., 2005a; Carreras, 2007). Our model outperforms the state of the art with an F-Score of 96.92 (percentage improvement of 7.06%) while using less than one tenth of the task-specific training data. We find that the use of a graph based approach instead of a traditional lattice-based sequential labelling approach leads to a percentage gain of 12.6% in F-Score for the segmentation task.