Gang Li


2020

pdf bib
The Medical Scribe: Corpus Development and Model Performance Analyses
Izhak Shafran | Nan Du | Linh Tran | Amanda Perry | Lauren Keyes | Mark Knichel | Ashley Domin | Lei Huang | Yu-hui Chen | Gang Li | Mingqiu Wang | Laurent El Shafey | Hagen Soltau | Justin Stuart Paul
Proceedings of the 12th Language Resources and Evaluation Conference

There is a growing interest in creating tools to assist in clinical note generation using the audio of provider-patient encounters. Motivated by this goal and with the help of providers and medical scribes, we developed an annotation scheme to extract relevant clinical concepts. We used this annotation scheme to label a corpus of about 6k clinical encounters. This was used to train a state-of-the-art tagging model. We report ontologies, labeling results, model performances, and detailed analyses of the results. Our results show that the entities related to medications can be extracted with a relatively high accuracy of 0.90 F-score, followed by symptoms at 0.72 F-score, and conditions at 0.57 F-score. In our task, we not only identify where the symptoms are mentioned but also map them to canonical forms as they appear in the clinical notes. Of the different types of errors, in about 19-38% of the cases, we find that the model output was correct, and about 17-32% of the errors do not impact the clinical note. Taken together, the models developed in this work are more useful than the F-scores reflect, making it a promising approach for practical applications.

pdf bib
Widget Captioning: Generating Natural Language Description for Mobile User Interface Elements
Yang Li | Gang Li | Luheng He | Jingjie Zheng | Hong Li | Zhiwei Guan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Natural language descriptions of user interface (UI) elements such as alternative text are crucial for accessibility and language-based interaction in general. Yet, these descriptions are constantly missing in mobile UIs. We propose widget captioning, a novel task for automatically generating language descriptions for UI elements from multimodal input including both the image and the structural representations of user interfaces. We collected a large-scale dataset for widget captioning with crowdsourcing. Our dataset contains 162,860 language phrases created by human workers for annotating 61,285 UI elements across 21,750 unique UI screens. We thoroughly analyze the dataset, and train and evaluate a set of deep model configurations to investigate how each feature modality as well as the choice of learning strategies impact the quality of predicted captions. The task formulation and the dataset as well as our benchmark models contribute a solid basis for this novel multimodal captioning task that connects language and user interfaces.

2019

pdf bib
Audio De-identification - a New Entity Recognition Task
Ido Cohn | Itay Laish | Genady Beryozkin | Gang Li | Izhak Shafran | Idan Szpektor | Tzvika Hartman | Avinatan Hassidim | Yossi Matias
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)

Named Entity Recognition (NER) has been mostly studied in the context of written text. Specifically, NER is an important step in de-identification (de-ID) of medical records, many of which are recorded conversations between a patient and a doctor. In such recordings, audio spans with personal information should be redacted, similar to the redaction of sensitive character spans in de-ID for written text. The application of NER in the context of audio de-identification has yet to be fully investigated. To this end, we define the task of audio de-ID, in which audio spans with entity mentions should be detected. We then present our pipeline for this task, which involves Automatic Speech Recognition (ASR), NER on the transcript text, and text-to-audio alignment. Finally, we introduce a novel metric for audio de-ID and a new evaluation benchmark consisting of a large labeled segment of the Switchboard and Fisher audio datasets and detail our pipeline’s results on it.

2017

pdf bib
Noise Reduction Methods for Distantly Supervised Biomedical Relation Extraction
Gang Li | Cathy Wu | K. Vijay-Shanker
BioNLP 2017

Distant supervision has been applied to automatically generate labeled data for biomedical relation extraction. Noise exists in both positively and negatively-labeled data and affects the performance of supervised machine learning methods. In this paper, we propose three novel heuristics based on the notion of proximity, trigger word and confidence of patterns to leverage lexical and syntactic information to reduce the level of noise in the distantly labeled data. Experiments on three different tasks, extraction of protein-protein-interaction, miRNA-gene regulation relation and protein-localization event, show that the proposed methods can improve the F-score over the baseline by 6, 10 and 14 points for the three tasks, respectively. We also show that when the models are configured to output high-confidence results, high precisions can be obtained using the proposed methods, making them promising for facilitating manual curation for databases.

2016

pdf bib
Recognizing Reference Spans and Classifying their Discourse Facets
Kun Lu | Jin Mao | Gang Li | Jian Xu
Proceedings of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL)