Fei-Tzin Lee


pdf bib
Identifying therapist conversational actions across diverse psychotherapeutic approaches
Fei-Tzin Lee | Derrick Hull | Jacob Levine | Bonnie Ray | Kathy McKeown
Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology

While conversation in therapy sessions can vary widely in both topic and style, an understanding of the underlying techniques used by therapists can provide valuable insights into how therapists best help clients of different types. Dialogue act classification aims to identify the conversational “action” each speaker takes at each utterance, such as sympathizing, problem-solving or assumption checking. We propose to apply dialogue act classification to therapy transcripts, using a therapy-specific labeling scheme, in order to gain a high-level understanding of the flow of conversation in therapy sessions. We present a novel annotation scheme that spans multiple psychotherapeutic approaches, apply it to a large and diverse corpus of psychotherapy transcripts, and present and discuss classification results obtained using both SVM and neural network-based models. The results indicate that identifying the structure and flow of therapeutic actions is an obtainable goal, opening up the opportunity in the future to provide therapeutic recommendations tailored to specific client situations.


pdf bib
Detecting Gang-Involved Escalation on Social Media Using Context
Serina Chang | Ruiqi Zhong | Ethan Adams | Fei-Tzin Lee | Siddharth Varia | Desmond Patton | William Frey | Chris Kedzie | Kathy McKeown
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Gang-involved youth in cities such as Chicago have increasingly turned to social media to post about their experiences and intents online. In some situations, when they experience the loss of a loved one, their online expression of emotion may evolve into aggression towards rival gangs and ultimately into real-world violence. In this paper, we present a novel system for detecting Aggression and Loss in social media. Our system features the use of domain-specific resources automatically derived from a large unlabeled corpus, and contextual representations of the emotional and semantic content of the user’s recent tweets as well as their interactions with other users. Incorporating context in our Convolutional Neural Network (CNN) leads to a significant improvement.