Etsuko Ishii


pdf bib
Image Position Prediction in Multimodal Documents
Masayasu Muraoka | Ryosuke Kohita | Etsuko Ishii
Proceedings of the 12th Language Resources and Evaluation Conference

Conventional multimodal tasks, such as caption generation and visual question answering, have allowed machines to understand an image by describing or being asked about it in natural language, often via a sentence. Datasets for these tasks contain a large number of pairs of an image and the corresponding sentence as an instance. However, a real multimodal document such as a news article or Wikipedia page consists of multiple sentences with multiple images. Such documents require an advanced skill of jointly considering the multiple texts and multiple images, beyond a single sentence and image, for the interpretation. Therefore, aiming at building a system that can understand multimodal documents, we propose a task called image position prediction (IPP). In this task, a system learns plausible positions of images in a given document. To study this task, we automatically constructed a dataset of 66K multimodal documents with 320K images from Wikipedia articles. We conducted a preliminary experiment to evaluate the performance of a current multimodal system on our task. The experimental results show that the system outperformed simple baselines while the performance is still far from human performance, which thus poses new challenges in multimodal research.

pdf bib
Plug-and-Play Conversational Models
Andrea Madotto | Etsuko Ishii | Zhaojiang Lin | Sumanth Dathathri | Pascale Fung
Findings of the Association for Computational Linguistics: EMNLP 2020

There has been considerable progress made towards conversational models that generate coherent and fluent responses; however, this often involves training large language models on large dialogue datasets, such as Reddit. These large conversational models provide little control over the generated responses, and this control is further limited in the absence of annotated conversational datasets for attribute specific generation that can be used for fine-tuning the model. In this paper, we first propose and evaluate plug-and-play methods for controllable response generation, which does not require dialogue specific datasets and does not rely on fine-tuning a large model. While effective, the decoding procedure induces considerable computational overhead, rendering the conversational model unsuitable for interactive usage. To overcome this, we introduce an approach that does not require further computation at decoding time, while also does not require any fine-tuning of a large language model. We demonstrate, through extensive automatic and human evaluation, a high degree of control over the generated conversational responses with regard to multiple desired attributes, while being fluent.