Esther van den Berg


2020

pdf bib
Doctor Who? Framing Through Names and Titles in German
Esther van den Berg | Katharina Korfhage | Josef Ruppenhofer | Michael Wiegand | Katja Markert
Proceedings of the 12th Language Resources and Evaluation Conference

Entity framing is the selection of aspects of an entity to promote a particular viewpoint towards that entity. We investigate entity framing of political figures through the use of names and titles in German online discourse, enhancing current research in entity framing through titling and naming that concentrates on English only. We collect tweets that mention prominent German politicians and annotate them for stance. We find that the formality of naming in these tweets correlates positively with their stance. This confirms sociolinguistic observations that naming and titling can have a status-indicating function and suggests that this function is dominant in German tweets mentioning political figures. We also find that this status-indicating function is much weaker in tweets from users that are politically left-leaning than in tweets by right-leaning users. This is in line with observations from moral psychology that left-leaning and right-leaning users assign different importance to maintaining social hierarchies.

pdf bib
Context in Informational Bias Detection
Esther van den Berg | Katja Markert
Proceedings of the 28th International Conference on Computational Linguistics

Informational bias is bias conveyed through sentences or clauses that provide tangential, speculative or background information that can sway readers’ opinions towards entities. By nature, informational bias is context-dependent, but previous work on informational bias detection has not explored the role of context beyond the sentence. In this paper, we explore four kinds of context for informational bias in English news articles: neighboring sentences, the full article, articles on the same event from other news publishers, and articles from the same domain (but potentially different events). We find that integrating event context improves classification performance over a very strong baseline. In addition, we perform the first error analysis of models on this task. We find that the best-performing context-inclusive model outperforms the baseline on longer sentences, and sentences from politically centrist articles.

2019

pdf bib
Not My President: How Names and Titles Frame Political Figures
Esther van den Berg | Katharina Korfhage | Josef Ruppenhofer | Michael Wiegand | Katja Markert
Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science

Naming and titling have been discussed in sociolinguistics as markers of status or solidarity. However, these functions have not been studied on a larger scale or for social media data. We collect a corpus of tweets mentioning presidents of six G20 countries by various naming forms. We show that naming variation relates to stance towards the president in a way that is suggestive of a framing effect mediated by respectfulness. This confirms sociolinguistic theory of naming and titling as markers of status.

2017

pdf bib
Authorship Attribution with Convolutional Neural Networks and POS-Eliding
Julian Hitschler | Esther van den Berg | Ines Rehbein
Proceedings of the Workshop on Stylistic Variation

We use a convolutional neural network to perform authorship identification on a very homogeneous dataset of scientific publications. In order to investigate the effect of domain biases, we obscure words below a certain frequency threshold, retaining only their POS-tags. This procedure improves test performance due to better generalization on unseen data. Using our method, we are able to predict the authors of scientific publications in the same discipline at levels well above chance.