Erik Ekstedt


2020

pdf bib
TurnGPT: a Transformer-based Language Model for Predicting Turn-taking in Spoken Dialog
Erik Ekstedt | Gabriel Skantze
Findings of the Association for Computational Linguistics: EMNLP 2020

Syntactic and pragmatic completeness is known to be important for turn-taking prediction, but so far machine learning models of turn-taking have used such linguistic information in a limited way. In this paper, we introduce TurnGPT, a transformer-based language model for predicting turn-shifts in spoken dialog. The model has been trained and evaluated on a variety of written and spoken dialog datasets. We show that the model outperforms two baselines used in prior work. We also report on an ablation study, as well as attention and gradient analyses, which show that the model is able to utilize the dialog context and pragmatic completeness for turn-taking prediction. Finally, we explore the model’s potential in not only detecting, but also projecting, turn-completions.

pdf bib
Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue
Olivier Pietquin | Smaranda Muresan | Vivian Chen | Casey Kennington | David Vandyke | Nina Dethlefs | Koji Inoue | Erik Ekstedt | Stefan Ultes
Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue