Eric Malmi


pdf bib
Rapformer: Conditional Rap Lyrics Generation with Denoising Autoencoders
Nikola I. Nikolov | Eric Malmi | Curtis Northcutt | Loreto Parisi
Proceedings of the 13th International Conference on Natural Language Generation

The ability to combine symbols to generate language is a defining characteristic of human intelligence, particularly in the context of artistic story-telling through lyrics. We develop a method for synthesizing a rap verse based on the content of any text (e.g., a news article), or for augmenting pre-existing rap lyrics. Our method, called Rapformer, is based on training a Transformer-based denoising autoencoder to reconstruct rap lyrics from content words extracted from the lyrics, trying to preserve the essential meaning, while matching the target style. Rapformer features a novel BERT-based paraphrasing scheme for rhyme enhancement which increases the average rhyme density of output lyrics by 10%. Experimental results on three diverse input domains show that Rapformer is capable of generating technically fluent verses that offer a good trade-off between content preservation and style transfer. Furthermore, a Turing-test-like experiment reveals that Rapformer fools human lyrics experts 25% of the time.

pdf bib
FELIX: Flexible Text Editing Through Tagging and Insertion
Jonathan Mallinson | Aliaksei Severyn | Eric Malmi | Guillermo Garrido
Findings of the Association for Computational Linguistics: EMNLP 2020

We present FELIX – a flexible text-editing approach for generation, designed to derive maximum benefit from the ideas of decoding with bi-directional contexts and self-supervised pretraining. In contrast to conventional sequenceto-sequence (seq2seq) models, FELIX is efficient in low-resource settings and fast at inference time, while being capable of modeling flexible input-output transformations. We achieve this by decomposing the text-editing task into two sub-tasks: tagging to decide on the subset of input tokens and their order in the output text and insertion to in-fill the missing tokens in the output not present in the input. The tagging model employs a novel Pointer mechanism, while the insertion model is based on a Masked Language Model (MLM). Both of these models are chosen to be non-autoregressive to guarantee faster inference. FELIX performs favourably when compared to recent text-editing methods and strong seq2seq baselines when evaluated on four NLG tasks: Sentence Fusion, Machine Translation Automatic Post-Editing, Summarization, and Text Simplification

pdf bib
Semantically Driven Sentence Fusion: Modeling and Evaluation
Eyal Ben-David | Orgad Keller | Eric Malmi | Idan Szpektor | Roi Reichart
Findings of the Association for Computational Linguistics: EMNLP 2020

Sentence fusion is the task of joining related sentences into coherent text. Current training and evaluation schemes for this task are based on single reference ground-truths and do not account for valid fusion variants. We show that this hinders models from robustly capturing the semantic relationship between input sentences. To alleviate this, we present an approach in which ground-truth solutions are automatically expanded into multiple references via curated equivalence classes of connective phrases. We apply this method to a large-scale dataset and use the augmented dataset for both model training and evaluation. To improve the learning of semantic representation using multiple references, we enrich the model with auxiliary discourse classification tasks under a multi-tasking framework. Our experiments highlight the improvements of our approach over state-of-the-art models.

pdf bib
Unsupervised Text Style Transfer with Padded Masked Language Models
Eric Malmi | Aliaksei Severyn | Sascha Rothe
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We propose Masker, an unsupervised text-editing method for style transfer. To tackle cases when no parallel source–target pairs are available, we train masked language models (MLMs) for both the source and the target domain. Then we find the text spans where the two models disagree the most in terms of likelihood. This allows us to identify the source tokens to delete to transform the source text to match the style of the target domain. The deleted tokens are replaced with the target MLM, and by using a padded MLM variant, we avoid having to predetermine the number of inserted tokens. Our experiments on sentence fusion and sentiment transfer demonstrate that Masker performs competitively in a fully unsupervised setting. Moreover, in low-resource settings, it improves supervised methods’ accuracy by over 10 percentage points when pre-training them on silver training data generated by Masker.


pdf bib
Encode, Tag, Realize: High-Precision Text Editing
Eric Malmi | Sebastian Krause | Sascha Rothe | Daniil Mirylenka | Aliaksei Severyn
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We propose LaserTagger - a sequence tagging approach that casts text generation as a text editing task. Target texts are reconstructed from the inputs using three main edit operations: keeping a token, deleting it, and adding a phrase before the token. To predict the edit operations, we propose a novel model, which combines a BERT encoder with an autoregressive Transformer decoder. This approach is evaluated on English text on four tasks: sentence fusion, sentence splitting, abstractive summarization, and grammar correction. LaserTagger achieves new state-of-the-art results on three of these tasks, performs comparably to a set of strong seq2seq baselines with a large number of training examples, and outperforms them when the number of examples is limited. Furthermore, we show that at inference time tagging can be more than two orders of magnitude faster than comparable seq2seq models, making it more attractive for running in a live environment.

pdf bib
DiscoFuse: A Large-Scale Dataset for Discourse-Based Sentence Fusion
Mor Geva | Eric Malmi | Idan Szpektor | Jonathan Berant
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Sentence fusion is the task of joining several independent sentences into a single coherent text. Current datasets for sentence fusion are small and insufficient for training modern neural models. In this paper, we propose a method for automatically-generating fusion examples from raw text and present DiscoFuse, a large scale dataset for discourse-based sentence fusion. We author a set of rules for identifying a diverse set of discourse phenomena in raw text, and decomposing the text into two independent sentences. We apply our approach on two document collections: Wikipedia and Sports articles, yielding 60 million fusion examples annotated with discourse information required to reconstruct the fused text. We develop a sequence-to-sequence model on DiscoFuse and thoroughly analyze its strengths and weaknesses with respect to the various discourse phenomena, using both automatic as well as human evaluation. Finally, we conduct transfer learning experiments with WebSplit, a recent dataset for text simplification. We show that pretraining on DiscoFuse substantially improves performance on WebSplit when viewed as a sentence fusion task.


pdf bib
Automatic Prediction of Discourse Connectives
Eric Malmi | Daniele Pighin | Sebastian Krause | Mikhail Kozhevnikov
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)


pdf bib
Redundancy Localization for the Conversationalization of Unstructured Responses
Sebastian Krause | Mikhail Kozhevnikov | Eric Malmi | Daniele Pighin
Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue

Conversational agents offer users a natural-language interface to accomplish tasks, entertain themselves, or access information. Informational dialogue is particularly challenging in that the agent has to hold a conversation on an open topic, and to achieve a reasonable coverage it generally needs to digest and present unstructured information from textual sources. Making responses based on such sources sound natural and fit appropriately into the conversation context is a topic of ongoing research, one of the key issues of which is preventing the agent’s responses from sounding repetitive. Targeting this issue, we propose a new task, known as redundancy localization, which aims to pinpoint semantic overlap between text passages. To help address it systematically, we formalize the task, prepare a public dataset with fine-grained redundancy labels, and propose a model utilizing a weak training signal defined over the results of a passage-retrieval system on web texts. The proposed model demonstrates superior performance compared to a state-of-the-art entailment model and yields encouraging results when applied to a real-world dialogue.