Elizabeth Boschee


pdf bib
LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from Explanation
Dong-Ho Lee | Rahul Khanna | Bill Yuchen Lin | Seyeon Lee | Qinyuan Ye | Elizabeth Boschee | Leonardo Neves | Xiang Ren
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Successfully training a deep neural network demands a huge corpus of labeled data. However, each label only provides limited information to learn from, and collecting the requisite number of labels involves massive human effort. In this work, we introduce LEAN-LIFE, a web-based, Label-Efficient AnnotatioN framework for sequence labeling and classification tasks, with an easy-to-use UI that not only allows an annotator to provide the needed labels for a task but also enables LearnIng From Explanations for each labeling decision. Such explanations enable us to generate useful additional labeled data from unlabeled instances, bolstering the pool of available training data. On three popular NLP tasks (named entity recognition, relation extraction, sentiment analysis), we find that using this enhanced supervision allows our models to surpass competitive baseline F1 scores by more than 5-10 percentage points, while using 2X times fewer labeled instances. Our framework is the first to utilize this enhanced supervision technique and does so for three important tasks – thus providing improved annotation recommendations to users and an ability to build datasets of (data, label, explanation) triples instead of the regular (data, label) pair.

pdf bib
Teaching Machine Comprehension with Compositional Explanations
Qinyuan Ye | Xiao Huang | Elizabeth Boschee | Xiang Ren
Findings of the Association for Computational Linguistics: EMNLP 2020

Advances in machine reading comprehension (MRC) rely heavily on the collection of large scale human-annotated examples in the form of (question, paragraph, answer) triples. In contrast, humans are typically able to generalize with only a few examples, relying on deeper underlying world knowledge, linguistic sophistication, and/or simply superior deductive powers. In this paper, we focus on “teaching” machines reading comprehension, using a small number of semi-structured explanations that explicitly inform machines why answer spans are correct. We extract structured variables and rules from explanations and compose neural module teachers that annotate instances for training downstream MRC models. We use learnable neural modules and soft logic to handle linguistic variation and overcome sparse coverage; the modules are jointly optimized with the MRC model to improve final performance. On the SQuAD dataset, our proposed method achieves 70.14% F1 score with supervision from 26 explanations, comparable to plain supervised learning using 1,100 labeled instances, yielding a 12x speed up.

pdf bib
SEARCHER: Shared Embedding Architecture for Effective Retrieval
Joel Barry | Elizabeth Boschee | Marjorie Freedman | Scott Miller
Proceedings of the workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS2020)

We describe an approach to cross lingual information retrieval that does not rely on explicit translation of either document or query terms. Instead, both queries and documents are mapped into a shared embedding space where retrieval is performed. We discuss potential advantages of the approach in handling polysemy and synonymy. We present a method for training the model, and give details of the model implementation. We present experimental results for two cases: Somali-English and Bulgarian-English CLIR.


pdf bib
Learning a Unified Named Entity Tagger from Multiple Partially Annotated Corpora for Efficient Adaptation
Xiao Huang | Li Dong | Elizabeth Boschee | Nanyun Peng
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Named entity recognition (NER) identifies typed entity mentions in raw text. While the task is well-established, there is no universally used tagset: often, datasets are annotated for use in downstream applications and accordingly only cover a small set of entity types relevant to a particular task. For instance, in the biomedical domain, one corpus might annotate genes, another chemicals, and another diseases—despite the texts in each corpus containing references to all three types of entities. In this paper, we propose a deep structured model to integrate these “partially annotated” datasets to jointly identify all entity types appearing in the training corpora. By leveraging multiple datasets, the model can learn robust input representations; by building a joint structured model, it avoids potential conflicts caused by combining several models’ predictions at test time. Experiments show that the proposed model significantly outperforms strong multi-task learning baselines when training on multiple, partially annotated datasets and testing on datasets that contain tags from more than one of the training corpora.

pdf bib
SARAL: A Low-Resource Cross-Lingual Domain-Focused Information Retrieval System for Effective Rapid Document Triage
Elizabeth Boschee | Joel Barry | Jayadev Billa | Marjorie Freedman | Thamme Gowda | Constantine Lignos | Chester Palen-Michel | Michael Pust | Banriskhem Kayang Khonglah | Srikanth Madikeri | Jonathan May | Scott Miller
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

With the increasing democratization of electronic media, vast information resources are available in less-frequently-taught languages such as Swahili or Somali. That information, which may be crucially important and not available elsewhere, can be difficult for monolingual English speakers to effectively access. In this paper we present an end-to-end cross-lingual information retrieval (CLIR) and summarization system for low-resource languages that 1) enables English speakers to search foreign language repositories of text and audio using English queries, 2) summarizes the retrieved documents in English with respect to a particular information need, and 3) provides complete transcriptions and translations as needed. The SARAL system achieved the top end-to-end performance in the most recent IARPA MATERIAL CLIR+summarization evaluations. Our demonstration system provides end-to-end open query retrieval and summarization capability, and presents the original source text or audio, speech transcription, and machine translation, for two low resource languages.


pdf bib
Last Words: What Can Be Accomplished with the State of the Art in Information Extraction? A Personal View
Ralph Weischedel | Elizabeth Boschee
Computational Linguistics, Volume 44, Issue 4 - December 2018

Though information extraction (IE) research has more than a 25-year history, F1 scores remain low. Thus, one could question continued investment in IE research. In this article, we present three applications where information extraction of entities, relations, and/or events has been used, and note the common features that seem to have led to success. We also identify key research challenges whose solution seems essential for broader successes. Because a few practical deployments already exist and because breakthroughs on particular challenges would greatly broaden the technology’s deployment, further R and D investments are justified.


pdf bib
Learning to Translate for Multilingual Question Answering
Ferhan Ture | Elizabeth Boschee
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing


pdf bib
Learning to Translate: A Query-Specific Combination Approach for Cross-Lingual Information Retrieval
Ferhan Ture | Elizabeth Boschee
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)


pdf bib
Extreme Extraction – Machine Reading in a Week
Marjorie Freedman | Lance Ramshaw | Elizabeth Boschee | Ryan Gabbard | Gary Kratkiewicz | Nicolas Ward | Ralph Weischedel
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing


pdf bib
Empirical Studies in Learning to Read
Marjorie Freedman | Edward Loper | Elizabeth Boschee | Ralph Weischedel
Proceedings of the NAACL HLT 2010 First International Workshop on Formalisms and Methodology for Learning by Reading


pdf bib
Experiments in Multi-Modal Automatic Content Extraction
Lance Ramshaw | Elizabeth Boschee | Sergey Bratus | Scott Miller | Rebecca Stone | Ralph Weischedel | Alex Zamanian
Proceedings of the First International Conference on Human Language Technology Research