Edoardo Maria Ponti


pdf bib
Internal and external pressures on language emergence: least effort, object constancy and frequency
Diana Rodríguez Luna | Edoardo Maria Ponti | Dieuwke Hupkes | Elia Bruni
Findings of the Association for Computational Linguistics: EMNLP 2020

In previous work, artificial agents were shown to achieve almost perfect accuracy in referential games where they have to communicate to identify images. Nevertheless, the resulting communication protocols rarely display salient features of natural languages, such as compositionality. In this paper, we propose some realistic sources of pressure on communication that avert this outcome. More specifically, we formalise the principle of least effort through an auxiliary objective. Moreover, we explore several game variants, inspired by the principle of object constancy, in which we alter the frequency, position, and luminosity of the objects in the images. We perform an extensive analysis on their effect through compositionality metrics, diagnostic classifiers, and zero-shot evaluation. Our findings reveal that the proposed sources of pressure result in emerging languages with less redundancy, more focus on high-level conceptual information, and better abilities of generalisation. Overall, our contributions reduce the gap between emergent and natural languages.

pdf bib
Specializing Unsupervised Pretraining Models for Word-Level Semantic Similarity
Anne Lauscher | Ivan Vulić | Edoardo Maria Ponti | Anna Korhonen | Goran Glavaš
Proceedings of the 28th International Conference on Computational Linguistics

Unsupervised pretraining models have been shown to facilitate a wide range of downstream NLP applications. These models, however, retain some of the limitations of traditional static word embeddings. In particular, they encode only the distributional knowledge available in raw text corpora, incorporated through language modeling objectives. In this work, we complement such distributional knowledge with external lexical knowledge, that is, we integrate the discrete knowledge on word-level semantic similarity into pretraining. To this end, we generalize the standard BERT model to a multi-task learning setting where we couple BERT’s masked language modeling and next sentence prediction objectives with an auxiliary task of binary word relation classification. Our experiments suggest that our “Lexically Informed” BERT (LIBERT), specialized for the word-level semantic similarity, yields better performance than the lexically blind “vanilla” BERT on several language understanding tasks. Concretely, LIBERT outperforms BERT in 9 out of 10 tasks of the GLUE benchmark and is on a par with BERT in the remaining one. Moreover, we show consistent gains on 3 benchmarks for lexical simplification, a task where knowledge about word-level semantic similarity is paramount, as well as large gains on lexical reasoning probes.

pdf bib
Emergent Communication Pretraining for Few-Shot Machine Translation
Yaoyiran Li | Edoardo Maria Ponti | Ivan Vulić | Anna Korhonen
Proceedings of the 28th International Conference on Computational Linguistics

While state-of-the-art models that rely upon massively multilingual pretrained encoders achieve sample efficiency in downstream applications, they still require abundant amounts of unlabelled text. Nevertheless, most of the world’s languages lack such resources. Hence, we investigate a more radical form of unsupervised knowledge transfer in the absence of linguistic data. In particular, for the first time we pretrain neural networks via emergent communication from referential games. Our key assumption is that grounding communication on images—as a crude approximation of real-world environments—inductively biases the model towards learning natural languages. On the one hand, we show that this substantially benefits machine translation in few-shot settings. On the other hand, this also provides an extrinsic evaluation protocol to probe the properties of emergent languages ex vitro. Intuitively, the closer they are to natural languages, the higher the gains from pretraining on them should be. For instance, in this work we measure the influence of communication success and maximum sequence length on downstream performances. Finally, we introduce a customised adapter layer and annealing strategies for the regulariser of maximum-a-posteriori inference during fine-tuning. These turn out to be crucial to facilitate knowledge transfer and prevent catastrophic forgetting. Compared to a recurrent baseline, our method yields gains of 59.0% 147.6% in BLEU score with only 500 NMT training instances and 65.1% 196.7% with 1,000 NMT training instances across four language pairs. These proof-of-concept results reveal the potential of emergent communication pretraining for both natural language processing tasks in resource-poor settings and extrinsic evaluation of artificial languages.

pdf bib
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
Edoardo Maria Ponti | Goran Glavaš | Olga Majewska | Qianchu Liu | Ivan Vulić | Anna Korhonen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In order to simulate human language capacity, natural language processing systems must be able to reason about the dynamics of everyday situations, including their possible causes and effects. Moreover, they should be able to generalise the acquired world knowledge to new languages, modulo cultural differences. Advances in machine reasoning and cross-lingual transfer depend on the availability of challenging evaluation benchmarks. Motivated by both demands, we introduce Cross-lingual Choice of Plausible Alternatives (XCOPA), a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages, which includes resource-poor languages like Eastern Apurímac Quechua and Haitian Creole. We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods based on multilingual pretraining and zero-shot fine-tuning falls short compared to translation-based transfer. Finally, we propose strategies to adapt multilingual models to out-of-sample resource-lean languages where only a small corpus or a bilingual dictionary is available, and report substantial improvements over the random baseline. The XCOPA dataset is freely available at github.com/cambridgeltl/xcopa.

pdf bib
Probing Pretrained Language Models for Lexical Semantics
Ivan Vulić | Edoardo Maria Ponti | Robert Litschko | Goran Glavaš | Anna Korhonen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The success of large pretrained language models (LMs) such as BERT and RoBERTa has sparked interest in probing their representations, in order to unveil what types of knowledge they implicitly capture. While prior research focused on morphosyntactic, semantic, and world knowledge, it remains unclear to which extent LMs also derive lexical type-level knowledge from words in context. In this work, we present a systematic empirical analysis across six typologically diverse languages and five different lexical tasks, addressing the following questions: 1) How do different lexical knowledge extraction strategies (monolingual versus multilingual source LM, out-of-context versus in-context encoding, inclusion of special tokens, and layer-wise averaging) impact performance? How consistent are the observed effects across tasks and languages? 2) Is lexical knowledge stored in few parameters, or is it scattered throughout the network? 3) How do these representations fare against traditional static word vectors in lexical tasks 4) Does the lexical information emerging from independently trained monolingual LMs display latent similarities? Our main results indicate patterns and best practices that hold universally, but also point to prominent variations across languages and tasks. Moreover, we validate the claim that lower Transformer layers carry more type-level lexical knowledge, but also show that this knowledge is distributed across multiple layers.

pdf bib
SIGTYP 2020 Shared Task: Prediction of Typological Features
Johannes Bjerva | Elizabeth Salesky | Sabrina J. Mielke | Aditi Chaudhary | Celano Giuseppe | Edoardo Maria Ponti | Ekaterina Vylomova | Ryan Cotterell | Isabelle Augenstein
Proceedings of the Second Workshop on Computational Research in Linguistic Typology

Typological knowledge bases (KBs) such as WALS (Dryer and Haspelmath, 2013) contain information about linguistic properties of the world’s languages. They have been shown to be useful for downstream applications, including cross-lingual transfer learning and linguistic probing. A major drawback hampering broader adoption of typological KBs is that they are sparsely populated, in the sense that most languages only have annotations for some features, and skewed, in that few features have wide coverage. As typological features often correlate with one another, it is possible to predict them and thus automatically populate typological KBs, which is also the focus of this shared task. Overall, the task attracted 8 submissions from 5 teams, out of which the most successful methods make use of such feature correlations. However, our error analysis reveals that even the strongest submitted systems struggle with predicting feature values for languages where few features are known.

pdf bib
SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection
Ekaterina Vylomova | Jennifer White | Elizabeth Salesky | Sabrina J. Mielke | Shijie Wu | Edoardo Maria Ponti | Rowan Hall Maudslay | Ran Zmigrod | Josef Valvoda | Svetlana Toldova | Francis Tyers | Elena Klyachko | Ilya Yegorov | Natalia Krizhanovsky | Paula Czarnowska | Irene Nikkarinen | Andrew Krizhanovsky | Tiago Pimentel | Lucas Torroba Hennigen | Christo Kirov | Garrett Nicolai | Adina Williams | Antonios Anastasopoulos | Hilaria Cruz | Eleanor Chodroff | Ryan Cotterell | Miikka Silfverberg | Mans Hulden
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

A broad goal in natural language processing (NLP) is to develop a system that has the capacity to process any natural language. Most systems, however, are developed using data from just one language such as English. The SIGMORPHON 2020 shared task on morphological reinflection aims to investigate systems’ ability to generalize across typologically distinct languages, many of which are low resource. Systems were developed using data from 45 languages and just 5 language families, fine-tuned with data from an additional 45 languages and 10 language families (13 in total), and evaluated on all 90 languages. A total of 22 systems (19 neural) from 10 teams were submitted to the task. All four winning systems were neural (two monolingual transformers and two massively multilingual RNN-based models with gated attention). Most teams demonstrate utility of data hallucination and augmentation, ensembles, and multilingual training for low-resource languages. Non-neural learners and manually designed grammars showed competitive and even superior performance on some languages (such as Ingrian, Tajik, Tagalog, Zarma, Lingala), especially with very limited data. Some language families (Afro-Asiatic, Niger-Congo, Turkic) were relatively easy for most systems and achieved over 90% mean accuracy while others were more challenging.


pdf bib
Cross-lingual Semantic Specialization via Lexical Relation Induction
Edoardo Maria Ponti | Ivan Vulić | Goran Glavaš | Roi Reichart | Anna Korhonen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Semantic specialization integrates structured linguistic knowledge from external resources (such as lexical relations in WordNet) into pretrained distributional vectors in the form of constraints. However, this technique cannot be leveraged in many languages, because their structured external resources are typically incomplete or non-existent. To bridge this gap, we propose a novel method that transfers specialization from a resource-rich source language (English) to virtually any target language. Our specialization transfer comprises two crucial steps: 1) Inducing noisy constraints in the target language through automatic word translation; and 2) Filtering the noisy constraints via a state-of-the-art relation prediction model trained on the source language constraints. This allows us to specialize any set of distributional vectors in the target language with the refined constraints. We prove the effectiveness of our method through intrinsic word similarity evaluation in 8 languages, and with 3 downstream tasks in 5 languages: lexical simplification, dialog state tracking, and semantic textual similarity. The gains over the previous state-of-art specialization methods are substantial and consistent across languages. Our results also suggest that the transfer method is effective even for lexically distant source-target language pairs. Finally, as a by-product, our method produces lists of WordNet-style lexical relations in resource-poor languages.

pdf bib
Towards Zero-shot Language Modeling
Edoardo Maria Ponti | Ivan Vulić | Ryan Cotterell | Roi Reichart | Anna Korhonen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Can we construct a neural language model which is inductively biased towards learning human language? Motivated by this question, we aim at constructing an informative prior for held-out languages on the task of character-level, open-vocabulary language modelling. We obtain this prior as the posterior over network weights conditioned on the data from a sample of training languages, which is approximated through Laplace’s method. Based on a large and diverse sample of languages, the use of our prior outperforms baseline models with an uninformative prior in both zero-shot and few-shot settings, showing that the prior is imbued with universal linguistic knowledge. Moreover, we harness broad language-specific information available for most languages of the world, i.e., features from typological databases, as distant supervision for held-out languages. We explore several language modelling conditioning techniques, including concatenation and meta-networks for parameter generation. They appear beneficial in the few-shot setting, but ineffective in the zero-shot setting. Since the paucity of even plain digital text affects the majority of the world’s languages, we hope that these insights will broaden the scope of applications for language technology.

pdf bib
Specializing Distributional Vectors of All Words for Lexical Entailment
Aishwarya Kamath | Jonas Pfeiffer | Edoardo Maria Ponti | Goran Glavaš | Ivan Vulić
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

Semantic specialization methods fine-tune distributional word vectors using lexical knowledge from external resources (e.g. WordNet) to accentuate a particular relation between words. However, such post-processing methods suffer from limited coverage as they affect only vectors of words seen in the external resources. We present the first post-processing method that specializes vectors of all vocabulary words – including those unseen in the resources – for the asymmetric relation of lexical entailment (LE) (i.e., hyponymy-hypernymy relation). Leveraging a partially LE-specialized distributional space, our POSTLE (i.e., post-specialization for LE) model learns an explicit global specialization function, allowing for specialization of vectors of unseen words, as well as word vectors from other languages via cross-lingual transfer. We capture the function as a deep feed-forward neural network: its objective re-scales vector norms to reflect the concept hierarchy while simultaneously attracting hyponymy-hypernymy pairs to better reflect semantic similarity. An extended model variant augments the basic architecture with an adversarial discriminator. We demonstrate the usefulness and versatility of POSTLE models with different input distributional spaces in different scenarios (monolingual LE and zero-shot cross-lingual LE transfer) and tasks (binary and graded LE). We report consistent gains over state-of-the-art LE-specialization methods, and successfully LE-specialize word vectors for languages without any external lexical knowledge.

pdf bib
Proceedings of TyP-NLP: The First Workshop on Typology for Polyglot NLP
Haim Dubossarsky | Arya D. McCarthy | Edoardo Maria Ponti | Ivan Vulić | Ekaterina Vylomova | Yevgeni Berzak | Ryan Cotterell | Manaal Faruqui | Anna Korhonen | Roi Reichart
Proceedings of TyP-NLP: The First Workshop on Typology for Polyglot NLP

pdf bib
Modeling Language Variation and Universals: A Survey on Typological Linguistics for Natural Language Processing
Edoardo Maria Ponti | Helen O’Horan | Yevgeni Berzak | Ivan Vulić | Roi Reichart | Thierry Poibeau | Ekaterina Shutova | Anna Korhonen
Computational Linguistics, Volume 45, Issue 3 - September 2019

Linguistic typology aims to capture structural and semantic variation across the world’s languages. A large-scale typology could provide excellent guidance for multilingual Natural Language Processing (NLP), particularly for languages that suffer from the lack of human labeled resources. We present an extensive literature survey on the use of typological information in the development of NLP techniques. Our survey demonstrates that to date, the use of information in existing typological databases has resulted in consistent but modest improvements in system performance. We show that this is due to both intrinsic limitations of databases (in terms of coverage and feature granularity) and under-utilization of the typological features included in them. We advocate for a new approach that adapts the broad and discrete nature of typological categories to the contextual and continuous nature of machine learning algorithms used in contemporary NLP. In particular, we suggest that such an approach could be facilitated by recent developments in data-driven induction of typological knowledge.


pdf bib
Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word Vector Specialization
Edoardo Maria Ponti | Ivan Vulić | Goran Glavaš | Nikola Mrkšić | Anna Korhonen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Semantic specialization is a process of fine-tuning pre-trained distributional word vectors using external lexical knowledge (e.g., WordNet) to accentuate a particular semantic relation in the specialized vector space. While post-processing specialization methods are applicable to arbitrary distributional vectors, they are limited to updating only the vectors of words occurring in external lexicons (i.e., seen words), leaving the vectors of all other words unchanged. We propose a novel approach to specializing the full distributional vocabulary. Our adversarial post-specialization method propagates the external lexical knowledge to the full distributional space. We exploit words seen in the resources as training examples for learning a global specialization function. This function is learned by combining a standard L2-distance loss with a adversarial loss: the adversarial component produces more realistic output vectors. We show the effectiveness and robustness of the proposed method across three languages and on three tasks: word similarity, dialog state tracking, and lexical simplification. We report consistent improvements over distributional word vectors and vectors specialized by other state-of-the-art specialization frameworks. Finally, we also propose a cross-lingual transfer method for zero-shot specialization which successfully specializes a full target distributional space without any lexical knowledge in the target language and without any bilingual data.

pdf bib
On the Relation between Linguistic Typology and (Limitations of) Multilingual Language Modeling
Daniela Gerz | Ivan Vulić | Edoardo Maria Ponti | Roi Reichart | Anna Korhonen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

A key challenge in cross-lingual NLP is developing general language-independent architectures that are equally applicable to any language. However, this ambition is largely hampered by the variation in structural and semantic properties, i.e. the typological profiles of the world’s languages. In this work, we analyse the implications of this variation on the language modeling (LM) task. We present a large-scale study of state-of-the art n-gram based and neural language models on 50 typologically diverse languages covering a wide variety of morphological systems. Operating in the full vocabulary LM setup focused on word-level prediction, we demonstrate that a coarse typology of morphological systems is predictive of absolute LM performance. Moreover, fine-grained typological features such as exponence, flexivity, fusion, and inflectional synthesis are borne out to be responsible for the proliferation of low-frequency phenomena which are organically difficult to model by statistical architectures, or for the meaning ambiguity of character n-grams. Our study strongly suggests that these features have to be taken into consideration during the construction of next-level language-agnostic LM architectures, capable of handling morphologically complex languages such as Tamil or Korean.

pdf bib
Isomorphic Transfer of Syntactic Structures in Cross-Lingual NLP
Edoardo Maria Ponti | Roi Reichart | Anna Korhonen | Ivan Vulić
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The transfer or share of knowledge between languages is a potential solution to resource scarcity in NLP. However, the effectiveness of cross-lingual transfer can be challenged by variation in syntactic structures. Frameworks such as Universal Dependencies (UD) are designed to be cross-lingually consistent, but even in carefully designed resources trees representing equivalent sentences may not always overlap. In this paper, we measure cross-lingual syntactic variation, or anisomorphism, in the UD treebank collection, considering both morphological and structural properties. We show that reducing the level of anisomorphism yields consistent gains in cross-lingual transfer tasks. We introduce a source language selection procedure that facilitates effective cross-lingual parser transfer, and propose a typologically driven method for syntactic tree processing which reduces anisomorphism. Our results show the effectiveness of this method for both machine translation and cross-lingual sentence similarity, demonstrating the importance of syntactic structure compatibility for boosting cross-lingual transfer in NLP.


pdf bib
Decoding Sentiment from Distributed Representations of Sentences
Edoardo Maria Ponti | Ivan Vulić | Anna Korhonen
Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)

Distributed representations of sentences have been developed recently to represent their meaning as real-valued vectors. However, it is not clear how much information such representations retain about the polarity of sentences. To study this question, we decode sentiment from unsupervised sentence representations learned with different architectures (sensitive to the order of words, the order of sentences, or none) in 9 typologically diverse languages. Sentiment results from the (recursive) composition of lexical items and grammatical strategies such as negation and concession. The results are manifold: we show that there is no ‘one-size-fits-all’ representation architecture outperforming the others across the board. Rather, the top-ranking architectures depend on the language at hand. Moreover, we find that in several cases the additive composition model based on skip-gram word vectors may surpass supervised state-of-art architectures such as bi-directional LSTMs. Finally, we provide a possible explanation of the observed variation based on the type of negative constructions in each language.

pdf bib
Event-Related Features in Feedforward Neural Networks Contribute to Identifying Causal Relations in Discourse
Edoardo Maria Ponti | Anna Korhonen
Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics

Causal relations play a key role in information extraction and reasoning. Most of the times, their expression is ambiguous or implicit, i.e. without signals in the text. This makes their identification challenging. We aim to improve their identification by implementing a Feedforward Neural Network with a novel set of features for this task. In particular, these are based on the position of event mentions and the semantics of events and participants. The resulting classifier outperforms strong baselines on two datasets (the Penn Discourse Treebank and the CSTNews corpus) annotated with different schemes and containing examples in two languages, English and Portuguese. This result demonstrates the importance of events for identifying discourse relations.


pdf bib
Differentia compositionem facit. A Slower-Paced and Reliable Parser for Latin
Edoardo Maria Ponti | Marco Passarotti
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

The Index Thomisticus Treebank is the largest available treebank for Latin; it contains Medieval Latin texts by Thomas Aquinas. After experimenting on its data with a number of dependency parsers based on different supervised machine learning techniques, we found that DeSR with a multilayer perceptron algorithm, a right-to-left transition, and a tailor-made feature model is the parser providing the highest accuracy rates. We improved the results further by using a technique that combines the output parses of DeSR with those provided by other parsers, outperforming the previous state of the art in parsing the Index Thomisticus Treebank. The key idea behind such improvement is to ensure a sufficient diversity and accuracy of the outputs to be combined; for this reason, we performed an in-depth evaluation of the results provided by the different parsers that we combined. Finally, we assessed that, although the general architecture of the parser is portable to Classical Latin, yet the model trained on Medieval Latin is inadequate for such purpose.