Eda Okur


2020

pdf bib
Low Rank Fusion based Transformers for Multimodal Sequences
Saurav Sahay | Eda Okur | Shachi H Kumar | Lama Nachman
Second Grand-Challenge and Workshop on Multimodal Language (Challenge-HML)

Our senses individually work in a coordinated fashion to express our emotional intentions. In this work, we experiment with modeling modality-specific sensory signals to attend to our latent multimodal emotional intentions and vice versa expressed via low-rank multimodal fusion and multimodal transformers. The low-rank factorization of multimodal fusion amongst the modalities helps represent approximate multiplicative latent signal interactions. Motivated by the work of~(CITATION) and~(CITATION), we present our transformer-based cross-fusion architecture without any over-parameterization of the model. The low-rank fusion helps represent the latent signal interactions while the modality-specific attention helps focus on relevant parts of the signal. We present two methods for the Multimodal Sentiment and Emotion Recognition results on CMU-MOSEI, CMU-MOSI, and IEMOCAP datasets and show that our models have lesser parameters, train faster and perform comparably to many larger fusion-based architectures.

pdf bib
Audio-Visual Understanding of Passenger Intents for In-Cabin Conversational Agents
Eda Okur | Shachi H Kumar | Saurav Sahay | Lama Nachman
Second Grand-Challenge and Workshop on Multimodal Language (Challenge-HML)

Building multimodal dialogue understanding capabilities situated in the in-cabin context is crucial to enhance passenger comfort in autonomous vehicle (AV) interaction systems. To this end, understanding passenger intents from spoken interactions and vehicle vision systems is an important building block for developing contextual and visually grounded conversational agents for AV. Towards this goal, we explore AMIE (Automated-vehicle Multimodal In-cabin Experience), the in-cabin agent responsible for handling multimodal passenger-vehicle interactions. In this work, we discuss the benefits of multimodal understanding of in-cabin utterances by incorporating verbal/language input together with the non-verbal/acoustic and visual input from inside and outside the vehicle. Our experimental results outperformed text-only baselines as we achieved improved performances for intent detection with multimodal approach.

2016

pdf bib
Named Entity Recognition on Twitter for Turkish using Semi-supervised Learning with Word Embeddings
Eda Okur | Hakan Demir | Arzucan Özgür
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

Recently, due to the increasing popularity of social media, the necessity for extracting information from informal text types, such as microblog texts, has gained significant attention. In this study, we focused on the Named Entity Recognition (NER) problem on informal text types for Turkish. We utilized a semi-supervised learning approach based on neural networks. We applied a fast unsupervised method for learning continuous representations of words in vector space. We made use of these obtained word embeddings, together with language independent features that are engineered to work better on informal text types, for generating a Turkish NER system on microblog texts. We evaluated our Turkish NER system on Twitter messages and achieved better F-score performances than the published results of previously proposed NER systems on Turkish tweets. Since we did not employ any language dependent features, we believe that our method can be easily adapted to microblog texts in other morphologically rich languages.