Devamanyu Hazarika


pdf bib
KinGDOM: Knowledge-Guided DOMain Adaptation for Sentiment Analysis
Deepanway Ghosal | Devamanyu Hazarika | Abhinaba Roy | Navonil Majumder | Rada Mihalcea | Soujanya Poria
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Cross-domain sentiment analysis has received significant attention in recent years, prompted by the need to combat the domain gap between different applications that make use of sentiment analysis. In this paper, we take a novel perspective on this task by exploring the role of external commonsense knowledge. We introduce a new framework, KinGDOM, which utilizes the ConceptNet knowledge graph to enrich the semantics of a document by providing both domain-specific and domain-general background concepts. These concepts are learned by training a graph convolutional autoencoder that leverages inter-domain concepts in a domain-invariant manner. Conditioning a popular domain-adversarial baseline method with these learned concepts helps improve its performance over state-of-the-art approaches, demonstrating the efficacy of our proposed framework.

pdf bib
Methods for Numeracy-Preserving Word Embeddings
Dhanasekar Sundararaman | Shijing Si | Vivek Subramanian | Guoyin Wang | Devamanyu Hazarika | Lawrence Carin
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Word embedding models are typically able to capture the semantics of words via the distributional hypothesis, but fail to capture the numerical properties of numbers that appear in the text. This leads to problems with numerical reasoning involving tasks such as question answering. We propose a new methodology to assign and learn embeddings for numbers. Our approach creates Deterministic, Independent-of-Corpus Embeddings (the model is referred to as DICE) for numbers, such that their cosine similarity reflects the actual distance on the number line. DICE outperforms a wide range of pre-trained word embedding models across multiple examples of two tasks: (i) evaluating the ability to capture numeration and magnitude; and (ii) to perform list maximum, decoding, and addition. We further explore the utility of these embeddings in downstream tasks, by initializing numbers with our approach for the task of magnitude prediction. We also introduce a regularization approach to learn model-based embeddings of numbers in a contextual setting.


pdf bib
MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations
Soujanya Poria | Devamanyu Hazarika | Navonil Majumder | Gautam Naik | Erik Cambria | Rada Mihalcea
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Emotion recognition in conversations is a challenging task that has recently gained popularity due to its potential applications. Until now, however, a large-scale multimodal multi-party emotional conversational database containing more than two speakers per dialogue was missing. Thus, we propose the Multimodal EmotionLines Dataset (MELD), an extension and enhancement of EmotionLines. MELD contains about 13,000 utterances from 1,433 dialogues from the TV-series Friends. Each utterance is annotated with emotion and sentiment labels, and encompasses audio, visual and textual modalities. We propose several strong multimodal baselines and show the importance of contextual and multimodal information for emotion recognition in conversations. The full dataset is available for use at

pdf bib
Towards Multimodal Sarcasm Detection (An _Obviously_ Perfect Paper)
Santiago Castro | Devamanyu Hazarika | Verónica Pérez-Rosas | Roger Zimmermann | Rada Mihalcea | Soujanya Poria
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Sarcasm is often expressed through several verbal and non-verbal cues, e.g., a change of tone, overemphasis in a word, a drawn-out syllable, or a straight looking face. Most of the recent work in sarcasm detection has been carried out on textual data. In this paper, we argue that incorporating multimodal cues can improve the automatic classification of sarcasm. As a first step towards enabling the development of multimodal approaches for sarcasm detection, we propose a new sarcasm dataset, Multimodal Sarcasm Detection Dataset (MUStARD), compiled from popular TV shows. MUStARD consists of audiovisual utterances annotated with sarcasm labels. Each utterance is accompanied by its context of historical utterances in the dialogue, which provides additional information on the scenario where the utterance occurs. Our initial results show that the use of multimodal information can reduce the relative error rate of sarcasm detection by up to 12.9% in F-score when compared to the use of individual modalities. The full dataset is publicly available for use at


pdf bib
Conversational Memory Network for Emotion Recognition in Dyadic Dialogue Videos
Devamanyu Hazarika | Soujanya Poria | Amir Zadeh | Erik Cambria | Louis-Philippe Morency | Roger Zimmermann
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Emotion recognition in conversations is crucial for the development of empathetic machines. Present methods mostly ignore the role of inter-speaker dependency relations while classifying emotions in conversations. In this paper, we address recognizing utterance-level emotions in dyadic conversational videos. We propose a deep neural framework, termed Conversational Memory Network (CMN), which leverages contextual information from the conversation history. In particular, CMN uses multimodal approach comprising audio, visual and textual features with gated recurrent units to model past utterances of each speaker into memories. These memories are then merged using attention-based hops to capture inter-speaker dependencies. Experiments show a significant improvement of 3 − 4% in accuracy over the state of the art.

pdf bib
Modeling Inter-Aspect Dependencies for Aspect-Based Sentiment Analysis
Devamanyu Hazarika | Soujanya Poria | Prateek Vij | Gangeshwar Krishnamurthy | Erik Cambria | Roger Zimmermann
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Aspect-based Sentiment Analysis is a fine-grained task of sentiment classification for multiple aspects in a sentence. Present neural-based models exploit aspect and its contextual information in the sentence but largely ignore the inter-aspect dependencies. In this paper, we incorporate this pattern by simultaneous classification of all aspects in a sentence along with temporal dependency processing of their corresponding sentence representations using recurrent networks. Results on the benchmark SemEval 2014 dataset suggest the effectiveness of our proposed approach.

pdf bib
ICON: Interactive Conversational Memory Network for Multimodal Emotion Detection
Devamanyu Hazarika | Soujanya Poria | Rada Mihalcea | Erik Cambria | Roger Zimmermann
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Emotion recognition in conversations is crucial for building empathetic machines. Present works in this domain do not explicitly consider the inter-personal influences that thrive in the emotional dynamics of dialogues. To this end, we propose Interactive COnversational memory Network (ICON), a multimodal emotion detection framework that extracts multimodal features from conversational videos and hierarchically models the self- and inter-speaker emotional influences into global memories. Such memories generate contextual summaries which aid in predicting the emotional orientation of utterance-videos. Our model outperforms state-of-the-art networks on multiple classification and regression tasks in two benchmark datasets.

pdf bib
CASCADE: Contextual Sarcasm Detection in Online Discussion Forums
Devamanyu Hazarika | Soujanya Poria | Sruthi Gorantla | Erik Cambria | Roger Zimmermann | Rada Mihalcea
Proceedings of the 27th International Conference on Computational Linguistics

The literature in automated sarcasm detection has mainly focused on lexical-, syntactic- and semantic-level analysis of text. However, a sarcastic sentence can be expressed with contextual presumptions, background and commonsense knowledge. In this paper, we propose a ContextuAl SarCasm DEtector (CASCADE), which adopts a hybrid approach of both content- and context-driven modeling for sarcasm detection in online social media discussions. For the latter, CASCADE aims at extracting contextual information from the discourse of a discussion thread. Also, since the sarcastic nature and form of expression can vary from person to person, CASCADE utilizes user embeddings that encode stylometric and personality features of users. When used along with content-based feature extractors such as convolutional neural networks, we see a significant boost in the classification performance on a large Reddit corpus.


pdf bib
Context-Dependent Sentiment Analysis in User-Generated Videos
Soujanya Poria | Erik Cambria | Devamanyu Hazarika | Navonil Majumder | Amir Zadeh | Louis-Philippe Morency
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal sentiment analysis is a developing area of research, which involves the identification of sentiments in videos. Current research considers utterances as independent entities, i.e., ignores the interdependencies and relations among the utterances of a video. In this paper, we propose a LSTM-based model that enables utterances to capture contextual information from their surroundings in the same video, thus aiding the classification process. Our method shows 5-10% performance improvement over the state of the art and high robustness to generalizability.


pdf bib
A Deeper Look into Sarcastic Tweets Using Deep Convolutional Neural Networks
Soujanya Poria | Erik Cambria | Devamanyu Hazarika | Prateek Vij
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Sarcasm detection is a key task for many natural language processing tasks. In sentiment analysis, for example, sarcasm can flip the polarity of an “apparently positive” sentence and, hence, negatively affect polarity detection performance. To date, most approaches to sarcasm detection have treated the task primarily as a text categorization problem. Sarcasm, however, can be expressed in very subtle ways and requires a deeper understanding of natural language that standard text categorization techniques cannot grasp. In this work, we develop models based on a pre-trained convolutional neural network for extracting sentiment, emotion and personality features for sarcasm detection. Such features, along with the network’s baseline features, allow the proposed models to outperform the state of the art on benchmark datasets. We also address the often ignored generalizability issue of classifying data that have not been seen by the models at learning phase.