Denis Emelin


pdf bib
Detecting Word Sense Disambiguation Biases in Machine Translation for Model-Agnostic Adversarial Attacks
Denis Emelin | Ivan Titov | Rico Sennrich
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Word sense disambiguation is a well-known source of translation errors in NMT. We posit that some of the incorrect disambiguation choices are due to models’ over-reliance on dataset artifacts found in training data, specifically superficial word co-occurrences, rather than a deeper understanding of the source text. We introduce a method for the prediction of disambiguation errors based on statistical data properties, demonstrating its effectiveness across several domains and model types. Moreover, we develop a simple adversarial attack strategy that minimally perturbs sentences in order to elicit disambiguation errors to further probe the robustness of translation models. Our findings indicate that disambiguation robustness varies substantially between domains and that different models trained on the same data are vulnerable to different attacks.


pdf bib
Widening the Representation Bottleneck in Neural Machine Translation with Lexical Shortcuts
Denis Emelin | Ivan Titov | Rico Sennrich
Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers)

The transformer is a state-of-the-art neural translation model that uses attention to iteratively refine lexical representations with information drawn from the surrounding context. Lexical features are fed into the first layer and propagated through a deep network of hidden layers. We argue that the need to represent and propagate lexical features in each layer limits the model’s capacity for learning and representing other information relevant to the task. To alleviate this bottleneck, we introduce gated shortcut connections between the embedding layer and each subsequent layer within the encoder and decoder. This enables the model to access relevant lexical content dynamically, without expending limited resources on storing it within intermediate states. We show that the proposed modification yields consistent improvements over a baseline transformer on standard WMT translation tasks in 5 translation directions (0.9 BLEU on average) and reduces the amount of lexical information passed along the hidden layers. We furthermore evaluate different ways to integrate lexical connections into the transformer architecture and present ablation experiments exploring the effect of proposed shortcuts on model behavior.


pdf bib
The University of Edinburgh’s Submissions to the WMT18 News Translation Task
Barry Haddow | Nikolay Bogoychev | Denis Emelin | Ulrich Germann | Roman Grundkiewicz | Kenneth Heafield | Antonio Valerio Miceli Barone | Rico Sennrich
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

The University of Edinburgh made submissions to all 14 language pairs in the news translation task, with strong performances in most pairs. We introduce new RNN-variant, mixed RNN/Transformer ensembles, data selection and weighting, and extensions to back-translation.