Debasis Ganguly


pdf bib
HBCP Corpus: A New Resource for the Analysis of Behavioural Change Intervention Reports
Francesca Bonin | Martin Gleize | Ailbhe Finnerty | Candice Moore | Charles Jochim | Emma Norris | Yufang Hou | Alison J. Wright | Debasis Ganguly | Emily Hayes | Silje Zink | Alessandra Pascale | Pol Mac Aonghusa | Susan Michie
Proceedings of the 12th Language Resources and Evaluation Conference

Due to the fast pace at which research reports in behaviour change are published, researchers, consultants and policymakers would benefit from more automatic ways to process these reports. Automatic extraction of the reports’ intervention content, population, settings and their results etc. are essential in synthesising and summarising the literature. However, to the best of our knowledge, no unique resource exists at the moment to facilitate this synthesis. In this paper, we describe the construction of a corpus of published behaviour change intervention evaluation reports aimed at smoking cessation. We also describe and release the annotation of 57 entities, that can be used as an off-the-shelf data resource for tasks such as entity recognition, etc. Both the corpus and the annotation dataset are being made available to the community.


pdf bib
Identification of Tasks, Datasets, Evaluation Metrics, and Numeric Scores for Scientific Leaderboards Construction
Yufang Hou | Charles Jochim | Martin Gleize | Francesca Bonin | Debasis Ganguly
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

While the fast-paced inception of novel tasks and new datasets helps foster active research in a community towards interesting directions, keeping track of the abundance of research activity in different areas on different datasets is likely to become increasingly difficult. The community could greatly benefit from an automatic system able to summarize scientific results, e.g., in the form of a leaderboard. In this paper we build two datasets and develop a framework (TDMS-IE) aimed at automatically extracting task, dataset, metric and score from NLP papers, towards the automatic construction of leaderboards. Experiments show that our model outperforms several baselines by a large margin. Our model is a first step towards automatic leaderboard construction, e.g., in the NLP domain.

pdf bib
Extracting Factual Min/Max Age Information from Clinical Trial Studies
Yufang Hou | Debasis Ganguly | Léa Deleris | Francesca Bonin
Proceedings of the 2nd Clinical Natural Language Processing Workshop

Population age information is an essential characteristic of clinical trials. In this paper, we focus on extracting minimum and maximum (min/max) age values for the study samples from clinical research articles. Specifically, we investigate the use of a neural network model for question answering to address this information extraction task. The min/max age QA model is trained on the massive structured clinical study records from For each article, based on multiple min and max age values extracted from the QA model, we predict both actual min/max age values for the study samples and filter out non-factual age expressions. Our system improves the results over (i) a passage retrieval based IE system and (ii) a CRF-based system by a large margin when evaluated on an annotated dataset consisting of 50 research papers on smoking cessation.

pdf bib
Word-Node2Vec: Improving Word Embedding with Document-Level Non-Local Word Co-occurrences
Procheta Sen | Debasis Ganguly | Gareth Jones
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

A standard word embedding algorithm, such as word2vec and glove, makes a strong assumption that words are likely to be semantically related only if they co-occur locally within a window of fixed size. However, this strong assumption may not capture the semantic association between words that co-occur frequently but non-locally within documents. In this paper, we propose a graph-based word embedding method, named ‘word-node2vec’. By relaxing the strong constraint of locality, our method is able to capture both the local and non-local co-occurrences. Word-node2vec constructs a graph where every node represents a word and an edge between two nodes represents a combination of both local (e.g. word2vec) and document-level co-occurrences. Our experiments show that word-node2vec outperforms word2vec and glove on a range of different tasks, such as predicting word-pair similarity, word analogy and concept categorization.


pdf bib
Tempo-Lexical Context Driven Word Embedding for Cross-Session Search Task Extraction
Procheta Sen | Debasis Ganguly | Gareth Jones
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Task extraction is the process of identifying search intents over a set of queries potentially spanning multiple search sessions. Most existing research on task extraction has focused on identifying tasks within a single session, where the notion of a session is defined by a fixed length time window. By contrast, in this work we seek to identify tasks that span across multiple sessions. To identify tasks, we conduct a global analysis of a query log in its entirety without restricting analysis to individual temporal windows. To capture inherent task semantics, we represent queries as vectors in an abstract space. We learn the embedding of query words in this space by leveraging the temporal and lexical contexts of queries. Embedded query vectors are then clustered into tasks. Experiments demonstrate that task extraction effectiveness is improved significantly with our proposed method of query vector embedding in comparison to existing approaches that make use of documents retrieved from a collection to estimate semantic similarities between queries.

pdf bib
Decision Conversations Decoded
Léa Deleris | Debasis Ganguly | Killian Levacher | Martin Stephenson | Francesca Bonin
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

We describe the vision and current version of a Natural Language Processing system aimed at group decision making facilitation. Borrowing from the scientific field of Decision Analysis, its essential role is to identify alternatives and criteria associated with a given decision, to keep track of who proposed them and of the expressed sentiment towards them. Based on this information, the system can help identify agreement and dissent or recommend an alternative. Overall, it seeks to help a group reach a decision in a natural yet auditable fashion.


pdf bib
Developing a Dataset for Evaluating Approaches for Document Expansion with Images
Debasis Ganguly | Iacer Calixto | Gareth Jones
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

Motivated by the adage that a “picture is worth a thousand words” it can be reasoned that automatically enriching the textual content of a document with relevant images can increase the readability of a document. Moreover, features extracted from the additional image data inserted into the textual content of a document may, in principle, be also be used by a retrieval engine to better match the topic of a document with that of a given query. In this paper, we describe our approach of building a ground truth dataset to enable further research into automatic addition of relevant images to text documents. The dataset is comprised of the official ImageCLEF 2010 collection (a collection of images with textual metadata) to serve as the images available for automatic enrichment of text, a set of 25 benchmark documents that are to be enriched, which in this case are children’s short stories, and a set of manually judged relevant images for each query story obtained by the standard procedure of depth pooling. We use this benchmark dataset to evaluate the effectiveness of standard information retrieval methods as simple baselines for this task. The results indicate that using the whole story as a weighted query, where the weight of each query term is its tf-idf value, achieves an precision of 0:1714 within the top 5 retrieved images on an average.


pdf bib
Automatic Prediction of Aesthetics and Interestingness of Text Passages
Debasis Ganguly | Johannes Leveling | Gareth Jones
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers


pdf bib
Cross-Lingual Topical Relevance Models
Debasis Ganguly | Johannes Leveling | Gareth Jones
Proceedings of COLING 2012

pdf bib
Approximate Sentence Retrieval for Scalable and Efficient Example-Based Machine Translation
Johannes Leveling | Debasis Ganguly | Sandipan Dandapat | Gareth Jones
Proceedings of COLING 2012