Dayong Wu


2019

pdf bib
IFlyLegal: A Chinese Legal System for Consultation, Law Searching, and Document Analysis
Ziyue Wang | Baoxin Wang | Xingyi Duan | Dayong Wu | Shijin Wang | Guoping Hu | Ting Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

Legal Tech is developed to help people with legal services and solve legal problems via machines. To achieve this, one of the key requirements for machines is to utilize legal knowledge and comprehend legal context. This can be fulfilled by natural language processing (NLP) techniques, for instance, text representation, text categorization, question answering (QA) and natural language inference, etc. To this end, we introduce a freely available Chinese Legal Tech system (IFlyLegal) that benefits from multiple NLP tasks. It is an integrated system that performs legal consulting, multi-way law searching, and legal document analysis by exploiting techniques such as deep contextual representations and various attention mechanisms. To our knowledge, IFlyLegal is the first Chinese legal system that employs up-to-date NLP techniques and caters for needs of different user groups, such as lawyers, judges, procurators, and clients. Since Jan, 2019, we have gathered 2,349 users and 28,238 page views (till June, 23, 2019).

2013

pdf bib
A Self-learning Template Approach for Recognizing Named Entities from Web Text
Qian Liu | Bingyang Liu | Dayong Wu | Yue Liu | Xueqi Cheng
Proceedings of the Sixth International Joint Conference on Natural Language Processing