Daya Guo


pdf bib
Evidence-Aware Inferential Text Generation with Vector Quantised Variational AutoEncoder
Daya Guo | Duyu Tang | Nan Duan | Jian Yin | Daxin Jiang | Ming Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Generating inferential texts about an event in different perspectives requires reasoning over different contexts that the event occurs. Existing works usually ignore the context that is not explicitly provided, resulting in a context-independent semantic representation that struggles to support the generation. To address this, we propose an approach that automatically finds evidence for an event from a large text corpus, and leverages the evidence to guide the generation of inferential texts. Our approach works in an encoderdecoder manner and is equipped with Vector Quantised-Variational Autoencoder, where the encoder outputs representations from a distribution over discrete variables. Such discrete representations enable automatically selecting relevant evidence, which not only facilitates evidence-aware generation, but also provides a natural way to uncover rationales behind the generation. Our approach provides state-of-the-art performance on both Event2mind and Atomic datasets. More importantly, we find that with discrete representations, our model selectively uses evidence to generate different inferential texts.

pdf bib
CodeBERT: A Pre-Trained Model for Programming and Natural Languages
Zhangyin Feng | Daya Guo | Duyu Tang | Nan Duan | Xiaocheng Feng | Ming Gong | Linjun Shou | Bing Qin | Ting Liu | Daxin Jiang | Ming Zhou
Findings of the Association for Computational Linguistics: EMNLP 2020

We present CodeBERT, a bimodal pre-trained model for programming language (PL) and natural language (NL). CodeBERT learns general-purpose representations that support downstream NL-PL applications such as natural language code search, code documentation generation, etc. We develop CodeBERT with Transformer-based neural architecture, and train it with a hybrid objective function that incorporates the pre-training task of replaced token detection, which is to detect plausible alternatives sampled from generators. This enables us to utilize both “bimodal” data of NL-PL pairs and “unimodal data, where the former provides input tokens for model training while the latter helps to learn better generators. We evaluate CodeBERT on two NL-PL applications by fine-tuning model parameters. Results show that CodeBERT achieves state-of-the-art performance on both natural language code search and code documentation generation. Furthermore, to investigate what type of knowledge is learned in CodeBERT, we construct a dataset for NL-PL probing, and evaluate in a zero-shot setting where parameters of pre-trained models are fixed. Results show that CodeBERT performs better than previous pre-trained models on NLPL probing.


pdf bib
Multi-Task Learning for Conversational Question Answering over a Large-Scale Knowledge Base
Tao Shen | Xiubo Geng | Tao Qin | Daya Guo | Duyu Tang | Nan Duan | Guodong Long | Daxin Jiang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We consider the problem of conversational question answering over a large-scale knowledge base. To handle huge entity vocabulary of a large-scale knowledge base, recent neural semantic parsing based approaches usually decompose the task into several subtasks and then solve them sequentially, which leads to following issues: 1) errors in earlier subtasks will be propagated and negatively affect downstream ones; and 2) each subtask cannot naturally share supervision signals with others. To tackle these issues, we propose an innovative multi-task learning framework where a pointer-equipped semantic parsing model is designed to resolve coreference in conversations, and naturally empower joint learning with a novel type-aware entity detection model. The proposed framework thus enables shared supervisions and alleviates the effect of error propagation. Experiments on a large-scale conversational question answering dataset containing 1.6M question answering pairs over 12.8M entities show that the proposed framework improves overall F1 score from 67% to 79% compared with previous state-of-the-art work.

pdf bib
Coupling Retrieval and Meta-Learning for Context-Dependent Semantic Parsing
Daya Guo | Duyu Tang | Nan Duan | Ming Zhou | Jian Yin
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this paper, we present an approach to incorporate retrieved datapoints as supporting evidence for context-dependent semantic parsing, such as generating source code conditioned on the class environment. Our approach naturally combines a retrieval model and a meta-learner, where the former learns to find similar datapoints from the training data, and the latter considers retrieved datapoints as a pseudo task for fast adaptation. Specifically, our retriever is a context-aware encoder-decoder model with a latent variable which takes context environment into consideration, and our meta-learner learns to utilize retrieved datapoints in a model-agnostic meta-learning paradigm for fast adaptation. We conduct experiments on CONCODE and CSQA datasets, where the context refers to class environment in JAVA codes and conversational history, respectively. We use sequence-to-action model as the base semantic parser, which performs the state-of-the-art accuracy on both datasets. Results show that both the context-aware retriever and the meta-learning strategy improve accuracy, and our approach performs better than retrieve-and-edit baselines.


pdf bib
Question Generation from SQL Queries Improves Neural Semantic Parsing
Daya Guo | Yibo Sun | Duyu Tang | Nan Duan | Jian Yin | Hong Chi | James Cao | Peng Chen | Ming Zhou
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In this paper, we study how to learn a semantic parser of state-of-the-art accuracy with less supervised training data. We conduct our study on WikiSQL, the largest hand-annotated semantic parsing dataset to date. First, we demonstrate that question generation is an effective method that empowers us to learn a state-of-the-art neural network based semantic parser with thirty percent of the supervised training data. Second, we show that applying question generation to the full supervised training data further improves the state-of-the-art model. In addition, we observe that there is a logarithmic relationship between the accuracy of a semantic parser and the amount of training data.