David Vandyke


2020

pdf bib
A Generative Model for Joint Natural Language Understanding and Generation
Bo-Hsiang Tseng | Jianpeng Cheng | Yimai Fang | David Vandyke
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Natural language understanding (NLU) and natural language generation (NLG) are two fundamental and related tasks in building task-oriented dialogue systems with opposite objectives: NLU tackles the transformation from natural language to formal representations, whereas NLG does the reverse. A key to success in either task is parallel training data which is expensive to obtain at a large scale. In this work, we propose a generative model which couples NLU and NLG through a shared latent variable. This approach allows us to explore both spaces of natural language and formal representations, and facilitates information sharing through the latent space to eventually benefit NLU and NLG. Our model achieves state-of-the-art performance on two dialogue datasets with both flat and tree-structured formal representations. We also show that the model can be trained in a semi-supervised fashion by utilising unlabelled data to boost its performance.

pdf bib
Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue
Olivier Pietquin | Smaranda Muresan | Vivian Chen | Casey Kennington | David Vandyke | Nina Dethlefs | Koji Inoue | Erik Ekstedt | Stefan Ultes
Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue

2017

pdf bib
PyDial: A Multi-domain Statistical Dialogue System Toolkit
Stefan Ultes | Lina M. Rojas-Barahona | Pei-Hao Su | David Vandyke | Dongho Kim | Iñigo Casanueva | Paweł Budzianowski | Nikola Mrkšić | Tsung-Hsien Wen | Milica Gašić | Steve Young
Proceedings of ACL 2017, System Demonstrations

pdf bib
A Network-based End-to-End Trainable Task-oriented Dialogue System
Tsung-Hsien Wen | David Vandyke | Nikola Mrkšić | Milica Gašić | Lina M. Rojas-Barahona | Pei-Hao Su | Stefan Ultes | Steve Young
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

Teaching machines to accomplish tasks by conversing naturally with humans is challenging. Currently, developing task-oriented dialogue systems requires creating multiple components and typically this involves either a large amount of handcrafting, or acquiring costly labelled datasets to solve a statistical learning problem for each component. In this work we introduce a neural network-based text-in, text-out end-to-end trainable goal-oriented dialogue system along with a new way of collecting dialogue data based on a novel pipe-lined Wizard-of-Oz framework. This approach allows us to develop dialogue systems easily and without making too many assumptions about the task at hand. The results show that the model can converse with human subjects naturally whilst helping them to accomplish tasks in a restaurant search domain.

2016

pdf bib
Conditional Generation and Snapshot Learning in Neural Dialogue Systems
Tsung-Hsien Wen | Milica Gašić | Nikola Mrkšić | Lina M. Rojas-Barahona | Pei-Hao Su | Stefan Ultes | David Vandyke | Steve Young
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Multi-domain Neural Network Language Generation for Spoken Dialogue Systems
Tsung-Hsien Wen | Milica Gašić | Nikola Mrkšić | Lina M. Rojas-Barahona | Pei-Hao Su | David Vandyke | Steve Young
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Counter-fitting Word Vectors to Linguistic Constraints
Nikola Mrkšić | Diarmuid Ó Séaghdha | Blaise Thomson | Milica Gašić | Lina M. Rojas-Barahona | Pei-Hao Su | David Vandyke | Tsung-Hsien Wen | Steve Young
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
On-line Active Reward Learning for Policy Optimisation in Spoken Dialogue Systems
Pei-Hao Su | Milica Gašić | Nikola Mrkšić | Lina M. Rojas-Barahona | Stefan Ultes | David Vandyke | Tsung-Hsien Wen | Steve Young
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Towards Using Conversations with Spoken Dialogue Systems in the Automated Assessment of Non-Native Speakers of English
Diane Litman | Steve Young | Mark Gales | Kate Knill | Karen Ottewell | Rogier van Dalen | David Vandyke
Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue

2015

pdf bib
Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems
Tsung-Hsien Wen | Milica Gašić | Nikola Mrkšić | Pei-Hao Su | David Vandyke | Steve Young
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Stochastic Language Generation in Dialogue using Recurrent Neural Networks with Convolutional Sentence Reranking
Tsung-Hsien Wen | Milica Gašić | Dongho Kim | Nikola Mrkšić | Pei-Hao Su | David Vandyke | Steve Young
Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue

pdf bib
Reward Shaping with Recurrent Neural Networks for Speeding up On-Line Policy Learning in Spoken Dialogue Systems
Pei-Hao Su | David Vandyke | Milica Gašić | Nikola Mrkšić | Tsung-Hsien Wen | Steve Young
Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue

pdf bib
Multi-domain Dialog State Tracking using Recurrent Neural Networks
Nikola Mrkšić | Diarmuid Ó Séaghdha | Blaise Thomson | Milica Gašić | Pei-Hao Su | David Vandyke | Tsung-Hsien Wen | Steve Young
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)