Daniel King


2019

pdf bib
Pretrained Language Models for Sequential Sentence Classification
Arman Cohan | Iz Beltagy | Daniel King | Bhavana Dalvi | Dan Weld
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

As a step toward better document-level understanding, we explore classification of a sequence of sentences into their corresponding categories, a task that requires understanding sentences in context of the document. Recent successful models for this task have used hierarchical models to contextualize sentence representations, and Conditional Random Fields (CRFs) to incorporate dependencies between subsequent labels. In this work, we show that pretrained language models, BERT (Devlin et al., 2018) in particular, can be used for this task to capture contextual dependencies without the need for hierarchical encoding nor a CRF. Specifically, we construct a joint sentence representation that allows BERT Transformer layers to directly utilize contextual information from all words in all sentences. Our approach achieves state-of-the-art results on four datasets, including a new dataset of structured scientific abstracts.

pdf bib
ScispaCy: Fast and Robust Models for Biomedical Natural Language Processing
Mark Neumann | Daniel King | Iz Beltagy | Waleed Ammar
Proceedings of the 18th BioNLP Workshop and Shared Task

Despite recent advances in natural language processing, many statistical models for processing text perform extremely poorly under domain shift. Processing biomedical and clinical text is a critically important application area of natural language processing, for which there are few robust, practical, publicly available models. This paper describes scispaCy, a new Python library and models for practical biomedical/scientific text processing, which heavily leverages the spaCy library. We detail the performance of two packages of models released in scispaCy and demonstrate their robustness on several tasks and datasets. Models and code are available at https://allenai.github.io/scispacy/.

pdf bib
Strong Baselines for Complex Word Identification across Multiple Languages
Pierre Finnimore | Elisabeth Fritzsch | Daniel King | Alison Sneyd | Aneeq Ur Rehman | Fernando Alva-Manchego | Andreas Vlachos
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Complex Word Identification (CWI) is the task of identifying which words or phrases in a sentence are difficult to understand by a target audience. The latest CWI Shared Task released data for two settings: monolingual (i.e. train and test in the same language) and cross-lingual (i.e. test in a language not seen during training). The best monolingual models relied on language-dependent features, which do not generalise in the cross-lingual setting, while the best cross-lingual model used neural networks with multi-task learning. In this paper, we present monolingual and cross-lingual CWI models that perform as well as (or better than) most models submitted to the latest CWI Shared Task. We show that carefully selected features and simple learning models can achieve state-of-the-art performance, and result in strong baselines for future development in this area. Finally, we discuss how inconsistencies in the annotation of the data can explain some of the results obtained.