Daniel Khashabi


2020

pdf bib
Not All Claims are Created Equal: Choosing the Right Statistical Approach to Assess Hypotheses
Erfan Sadeqi Azer | Daniel Khashabi | Ashish Sabharwal | Dan Roth
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Empirical research in Natural Language Processing (NLP) has adopted a narrow set of principles for assessing hypotheses, relying mainly on p-value computation, which suffers from several known issues. While alternative proposals have been well-debated and adopted in other fields, they remain rarely discussed or used within the NLP community. We address this gap by contrasting various hypothesis assessment techniques, especially those not commonly used in the field (such as evaluations based on Bayesian inference). Since these statistical techniques differ in the hypotheses they can support, we argue that practitioners should first decide their target hypothesis before choosing an assessment method. This is crucial because common fallacies, misconceptions, and misinterpretation surrounding hypothesis assessment methods often stem from a discrepancy between what one would like to claim versus what the method used actually assesses. Our survey reveals that these issues are omnipresent in the NLP research community. As a step forward, we provide best practices and guidelines tailored to NLP research, as well as an easy-to-use package for Bayesian assessment of hypotheses, complementing existing tools.

pdf bib
Temporal Common Sense Acquisition with Minimal Supervision
Ben Zhou | Qiang Ning | Daniel Khashabi | Dan Roth
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Temporal common sense (e.g., duration and frequency of events) is crucial for understanding natural language. However, its acquisition is challenging, partly because such information is often not expressed explicitly in text, and human annotation on such concepts is costly. This work proposes a novel sequence modeling approach that exploits explicit and implicit mentions of temporal common sense, extracted from a large corpus, to build TacoLM, a temporal common sense language model. Our method is shown to give quality predictions of various dimensions of temporal common sense (on UDST and a newly collected dataset from RealNews). It also produces representations of events for relevant tasks such as duration comparison, parent-child relations, event coreference and temporal QA (on TimeBank, HiEVE and MCTACO) that are better than using the standard BERT. Thus, it will be an important component of temporal NLP.

pdf bib
Evaluating Models’ Local Decision Boundaries via Contrast Sets
Matt Gardner | Yoav Artzi | Victoria Basmov | Jonathan Berant | Ben Bogin | Sihao Chen | Pradeep Dasigi | Dheeru Dua | Yanai Elazar | Ananth Gottumukkala | Nitish Gupta | Hannaneh Hajishirzi | Gabriel Ilharco | Daniel Khashabi | Kevin Lin | Jiangming Liu | Nelson F. Liu | Phoebe Mulcaire | Qiang Ning | Sameer Singh | Noah A. Smith | Sanjay Subramanian | Reut Tsarfaty | Eric Wallace | Ally Zhang | Ben Zhou
Findings of the Association for Computational Linguistics: EMNLP 2020

Standard test sets for supervised learning evaluate in-distribution generalization. Unfortunately, when a dataset has systematic gaps (e.g., annotation artifacts), these evaluations are misleading: a model can learn simple decision rules that perform well on the test set but do not capture the abilities a dataset is intended to test. We propose a more rigorous annotation paradigm for NLP that helps to close systematic gaps in the test data. In particular, after a dataset is constructed, we recommend that the dataset authors manually perturb the test instances in small but meaningful ways that (typically) change the gold label, creating contrast sets. Contrast sets provide a local view of a model’s decision boundary, which can be used to more accurately evaluate a model’s true linguistic capabilities. We demonstrate the efficacy of contrast sets by creating them for 10 diverse NLP datasets (e.g., DROP reading comprehension, UD parsing, and IMDb sentiment analysis). Although our contrast sets are not explicitly adversarial, model performance is significantly lower on them than on the original test sets—up to 25% in some cases. We release our contrast sets as new evaluation benchmarks and encourage future dataset construction efforts to follow similar annotation processes.

pdf bib
UNIFIEDQA: Crossing Format Boundaries with a Single QA System
Daniel Khashabi | Sewon Min | Tushar Khot | Ashish Sabharwal | Oyvind Tafjord | Peter Clark | Hannaneh Hajishirzi
Findings of the Association for Computational Linguistics: EMNLP 2020

Question answering (QA) tasks have been posed using a variety of formats, such as extractive span selection, multiple choice, etc. This has led to format-specialized models, and even to an implicit division in the QA community. We argue that such boundaries are artificial and perhaps unnecessary, given the reasoning abilities we seek to teach are not governed by the format. As evidence, we use the latest advances in language modeling to build a single pre-trained QA model, UNIFIEDQA, that performs well across 19 QA datasets spanning 4 diverse formats. UNIFIEDQA performs on par with 8 different models that were trained on individual datasets themselves. Even when faced with 12 unseen datasets of observed formats, UNIFIEDQA performs surprisingly well, showing strong generalization from its outof-format training data. Finally, simply finetuning this pre trained QA model into specialized models results in a new state of the art on 10 factoid and commonsense question answering datasets, establishing UNIFIEDQA as a strong starting point for building QA systems.

pdf bib
UNQOVERing Stereotyping Biases via Underspecified Questions
Tao Li | Daniel Khashabi | Tushar Khot | Ashish Sabharwal | Vivek Srikumar
Findings of the Association for Computational Linguistics: EMNLP 2020

While language embeddings have been shown to have stereotyping biases, how these biases affect downstream question answering (QA) models remains unexplored. We present UNQOVER, a general framework to probe and quantify biases through underspecified questions. We show that a naive use of model scores can lead to incorrect bias estimates due to two forms of reasoning errors: positional dependence and question independence. We design a formalism that isolates the aforementioned errors. As case studies, we use this metric to analyze four important classes of stereotypes: gender, nationality, ethnicity, and religion. We probe five transformer-based QA models trained on two QA datasets, along with their underlying language models. Our broad study reveals that (1) all these models, with and without fine-tuning, have notable stereotyping biases in these classes; (2) larger models often have higher bias; and (3) the effect of fine-tuning on bias varies strongly with the dataset and the model size.

pdf bib
More Bang for Your Buck: Natural Perturbation for Robust Question Answering
Daniel Khashabi | Tushar Khot | Ashish Sabharwal
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Deep learning models for linguistic tasks require large training datasets, which are expensive to create. As an alternative to the traditional approach of creating new instances by repeating the process of creating one instance, we propose doing so by first collecting a set of seed examples and then applying human-driven natural perturbations (as opposed to rule-based machine perturbations), which often change the gold label as well. Such perturbations have the advantage of being relatively easier (and hence cheaper) to create than writing out completely new examples. Further, they help address the issue that even models achieving human-level scores on NLP datasets are known to be considerably sensitive to small changes in input. To evaluate the idea, we consider a recent question-answering dataset (BOOLQ) and study our approach as a function of the perturbation cost ratio, the relative cost of perturbing an existing question vs. creating a new one from scratch. We find that when natural perturbations are moderately cheaper to create (cost ratio under 60%), it is more effective to use them for training BOOLQ models: such models exhibit 9% higher robustness and 4.5% stronger generalization, while retaining performance on the original BOOLQ dataset.

2019

pdf bib
“Going on a vacation” takes longer than “Going for a walk”: A Study of Temporal Commonsense Understanding
Ben Zhou | Daniel Khashabi | Qiang Ning | Dan Roth
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Understanding time is crucial for understanding events expressed in natural language. Because people rarely say the obvious, it is often necessary to have commonsense knowledge about various temporal aspects of events, such as duration, frequency, and temporal order. However, this important problem has so far received limited attention. This paper systematically studies this temporal commonsense problem. Specifically, we define five classes of temporal commonsense, and use crowdsourcing to develop a new dataset, MCTACO, that serves as a test set for this task. We find that the best current methods used on MCTACO are still far behind human performance, by about 20%, and discuss several directions for improvement. We hope that the new dataset and our study here can foster more future research on this topic.

pdf bib
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop
Fernando Alva-Manchego | Eunsol Choi | Daniel Khashabi
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

pdf bib
PerspectroScope: A Window to the World of Diverse Perspectives
Sihao Chen | Daniel Khashabi | Chris Callison-Burch | Dan Roth
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

This work presents PerspectroScope, a web-based system which lets users query a discussion-worthy natural language claim, and extract and visualize various perspectives in support or against the claim, along with evidence supporting each perspective. The system thus lets users explore various perspectives that could touch upon aspects of the issue at hand.The system is built as a combination of retrieval engines and learned textual-entailment-like classifiers built using a few recent developments in natural language understanding. To make the system more adaptive, expand its coverage, and improve its decisions over time, our platform employs various mechanisms to get corrections from the users. PerspectroScope is available at github.com/CogComp/perspectroscope Web demo link: http://orwell.seas.upenn.edu:4002/ Link to demo video: https://www.youtube.com/watch?v=MXBTR1Sp3Bs

pdf bib
Seeing Things from a Different Angle:Discovering Diverse Perspectives about Claims
Sihao Chen | Daniel Khashabi | Wenpeng Yin | Chris Callison-Burch | Dan Roth
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

One key consequence of the information revolution is a significant increase and a contamination of our information supply. The practice of fact checking won’t suffice to eliminate the biases in text data we observe, as the degree of factuality alone does not determine whether biases exist in the spectrum of opinions visible to us. To better understand controversial issues, one needs to view them from a diverse yet comprehensive set of perspectives. For example, there are many ways to respond to a claim such as “animals should have lawful rights”, and these responses form a spectrum of perspectives, each with a stance relative to this claim and, ideally, with evidence supporting it. Inherently, this is a natural language understanding task, and we propose to address it as such. Specifically, we propose the task of substantiated perspective discovery where, given a claim, a system is expected to discover a diverse set of well-corroborated perspectives that take a stance with respect to the claim. Each perspective should be substantiated by evidence paragraphs which summarize pertinent results and facts. We construct PERSPECTRUM, a dataset of claims, perspectives and evidence, making use of online debate websites to create the initial data collection, and augmenting it using search engines in order to expand and diversify our dataset. We use crowd-sourcing to filter out noise and ensure high-quality data. Our dataset contains 1k claims, accompanied with pools of 10k and 8k perspective sentences and evidence paragraphs, respectively. We provide a thorough analysis of the dataset to highlight key underlying language understanding challenges, and show that human baselines across multiple subtasks far outperform ma-chine baselines built upon state-of-the-art NLP techniques. This poses a challenge and opportunity for the NLP community to address.

2018

pdf bib
CogCompNLP: Your Swiss Army Knife for NLP
Daniel Khashabi | Mark Sammons | Ben Zhou | Tom Redman | Christos Christodoulopoulos | Vivek Srikumar | Nicholas Rizzolo | Lev Ratinov | Guanheng Luo | Quang Do | Chen-Tse Tsai | Subhro Roy | Stephen Mayhew | Zhili Feng | John Wieting | Xiaodong Yu | Yangqiu Song | Shashank Gupta | Shyam Upadhyay | Naveen Arivazhagan | Qiang Ning | Shaoshi Ling | Dan Roth
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Looking Beyond the Surface: A Challenge Set for Reading Comprehension over Multiple Sentences
Daniel Khashabi | Snigdha Chaturvedi | Michael Roth | Shyam Upadhyay | Dan Roth
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We present a reading comprehension challenge in which questions can only be answered by taking into account information from multiple sentences. We solicit and verify questions and answers for this challenge through a 4-step crowdsourcing experiment. Our challenge dataset contains 6,500+ questions for 1000+ paragraphs across 7 different domains (elementary school science, news, travel guides, fiction stories, etc) bringing in linguistic diversity to the texts and to the questions wordings. On a subset of our dataset, we found human solvers to achieve an F1-score of 88.1%. We analyze a range of baselines, including a recent state-of-art reading comprehension system, and demonstrate the difficulty of this challenge, despite a high human performance. The dataset is the first to study multi-sentence inference at scale, with an open-ended set of question types that requires reasoning skills.

pdf bib
Zero-Shot Open Entity Typing as Type-Compatible Grounding
Ben Zhou | Daniel Khashabi | Chen-Tse Tsai | Dan Roth
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

The problem of entity-typing has been studied predominantly as a supervised learning problems, mostly with task-specific annotations (for coarse types) and sometimes with distant supervision (for fine types). While such approaches have strong performance within datasets they often lack the flexibility to transfer across text genres and to generalize to new type taxonomies. In this work we propose a zero-shot entity typing approach that requires no annotated data and can flexibly identify newly defined types. Given a type taxonomy, the entries of which we define as Boolean functions of freebase “types,” we ground a given mention to a set of type-compatible Wikipedia entries, and then infer the target mention’s type using an inference algorithm that makes use of the types of these entries. We evaluate our system on a broad range of datasets, including standard fine-grained and coarse-grained entity typing datasets, and on a dataset in the biological domain. Our system is shown to be competitive with state-of-the-art supervised NER systems, and to outperform them on out-of-training datasets. We also show that our system significantly outperforms other zero-shot fine typing systems.

2017

pdf bib
Learning What is Essential in Questions
Daniel Khashabi | Tushar Khot | Ashish Sabharwal | Dan Roth
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)

Question answering (QA) systems are easily distracted by irrelevant or redundant words in questions, especially when faced with long or multi-sentence questions in difficult domains. This paper introduces and studies the notion of essential question terms with the goal of improving such QA solvers. We illustrate the importance of essential question terms by showing that humans’ ability to answer questions drops significantly when essential terms are eliminated from questions.We then develop a classifier that reliably (90% mean average precision) identifies and ranks essential terms in questions. Finally, we use the classifier to demonstrate that the notion of question term essentiality allows state-of-the-art QA solver for elementary-level science questions to make better and more informed decisions,improving performance by up to 5%.We also introduce a new dataset of over 2,200 crowd-sourced essential terms annotated science questions.

2016

pdf bib
EDISON: Feature Extraction for NLP, Simplified
Mark Sammons | Christos Christodoulopoulos | Parisa Kordjamshidi | Daniel Khashabi | Vivek Srikumar | Dan Roth
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

When designing Natural Language Processing (NLP) applications that use Machine Learning (ML) techniques, feature extraction becomes a significant part of the development effort, whether developing a new application or attempting to reproduce results reported for existing NLP tasks. We present EDISON, a Java library of feature generation functions used in a suite of state-of-the-art NLP tools, based on a set of generic NLP data structures. These feature extractors populate simple data structures encoding the extracted features, which the package can also serialize to an intuitive JSON file format that can be easily mapped to formats used by ML packages. EDISON can also be used programmatically with JVM-based (Java/Scala) NLP software to provide the feature extractor input. The collection of feature extractors is organised hierarchically and a simple search interface is provided. In this paper we include examples that demonstrate the versatility and ease-of-use of the EDISON feature extraction suite to show that this can significantly reduce the time spent by developers on feature extraction design for NLP systems. The library is publicly hosted at https://github.com/IllinoisCogComp/illinois-cogcomp-nlp/, and we hope that other NLP researchers will contribute to the set of feature extractors. In this way, the community can help simplify reproduction of published results and the integration of ideas from diverse sources when developing new and improved NLP applications.

pdf bib
Better call Saul: Flexible Programming for Learning and Inference in NLP
Parisa Kordjamshidi | Daniel Khashabi | Christos Christodoulopoulos | Bhargav Mangipudi | Sameer Singh | Dan Roth
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

We present a novel way for designing complex joint inference and learning models using Saul (Kordjamshidi et al., 2015), a recently-introduced declarative learning-based programming language (DeLBP). We enrich Saul with components that are necessary for a broad range of learning based Natural Language Processing tasks at various levels of granularity. We illustrate these advances using three different, well-known NLP problems, and show how these generic learning and inference modules can directly exploit Saul’s graph-based data representation. These properties allow the programmer to easily switch between different model formulations and configurations, and consider various kinds of dependencies and correlations among variables of interest with minimal programming effort. We argue that Saul provides an extremely useful paradigm both for the design of advanced NLP systems and for supporting advanced research in NLP.

2015

pdf bib
Solving Hard Coreference Problems
Haoruo Peng | Daniel Khashabi | Dan Roth
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies