Christopher Tauchmann


2020

pdf bib
Language Agnostic Automatic Summarization Evaluation
Christopher Tauchmann | Margot Mieskes
Proceedings of the 12th Language Resources and Evaluation Conference

So far work on automatic summarization has dealt primarily with English data. Accordingly, evaluation methods were primarily developed with this language in mind. In our work, we present experiments of adapting available evaluation methods such as ROUGE and PYRAMID to non-English data. We base our experiments on various English and non-English homogeneous benchmark data sets as well as a non-English heterogeneous data set. Our results indicate that ROUGE can indeed be adapted to non-English data – both homogeneous and heterogeneous. Using a recent implementation of performing an automatic PYRAMID evaluation, we also show its adaptability to non-English data.

2018

pdf bib
Beyond Generic Summarization: A Multi-faceted Hierarchical Summarization Corpus of Large Heterogeneous Data
Christopher Tauchmann | Thomas Arnold | Andreas Hanselowski | Christian M. Meyer | Margot Mieskes
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
ArgumenText: Searching for Arguments in Heterogeneous Sources
Christian Stab | Johannes Daxenberger | Chris Stahlhut | Tristan Miller | Benjamin Schiller | Christopher Tauchmann | Steffen Eger | Iryna Gurevych
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

Argument mining is a core technology for enabling argument search in large corpora. However, most current approaches fall short when applied to heterogeneous texts. In this paper, we present an argument retrieval system capable of retrieving sentential arguments for any given controversial topic. By analyzing the highest-ranked results extracted from Web sources, we found that our system covers 89% of arguments found in expert-curated lists of arguments from an online debate portal, and also identifies additional valid arguments.