Christine Basta


2020

bib
Towards Mitigating Gender Bias in a decoder-based Neural Machine Translation model by Adding Contextual Information
Christine Basta | Marta R. Costa-jussà | José A. R. Fonollosa
Proceedings of the The Fourth Widening Natural Language Processing Workshop

Gender bias negatively impacts many natural language processing applications, including machine translation (MT). The motivation behind this work is to study whether recent proposed MT techniques are significantly contributing to attenuate biases in document-level and gender-balanced data. For the study, we consider approaches of adding the previous sentence and the speaker information, implemented in a decoder-based neural MT system. We show improvements both in translation quality (+1 BLEU point) as well as in gender bias mitigation on WinoMT (+5% accuracy).

2019

pdf bib
Evaluating the Underlying Gender Bias in Contextualized Word Embeddings
Christine Basta | Marta R. Costa-jussà | Noe Casas
Proceedings of the First Workshop on Gender Bias in Natural Language Processing

Gender bias is highly impacting natural language processing applications. Word embeddings have clearly been proven both to keep and amplify gender biases that are present in current data sources. Recently, contextualized word embeddings have enhanced previous word embedding techniques by computing word vector representations dependent on the sentence they appear in. In this paper, we study the impact of this conceptual change in the word embedding computation in relation with gender bias. Our analysis includes different measures previously applied in the literature to standard word embeddings. Our findings suggest that contextualized word embeddings are less biased than standard ones even when the latter are debiased.

pdf bib
The TALP-UPC Machine Translation Systems for WMT19 News Translation Task: Pivoting Techniques for Low Resource MT
Noe Casas | José A. R. Fonollosa | Carlos Escolano | Christine Basta | Marta R. Costa-jussà
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

In this article, we describe the TALP-UPC research group participation in the WMT19 news translation shared task for Kazakh-English. Given the low amount of parallel training data, we resort to using Russian as pivot language, training subword-based statistical translation systems for Russian-Kazakh and Russian-English that were then used to create two synthetic pseudo-parallel corpora for Kazakh-English and English-Kazakh respectively. Finally, a self-attention model based on the decoder part of the Transformer architecture was trained on the two pseudo-parallel corpora.