Cho-Jui Hsieh


pdf bib
What Does BERT with Vision Look At?
Liunian Harold Li | Mark Yatskar | Da Yin | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Pre-trained visually grounded language models such as ViLBERT, LXMERT, and UNITER have achieved significant performance improvement on vision-and-language tasks but what they learn during pre-training remains unclear. In this work, we demonstrate that certain attention heads of a visually grounded language model actively ground elements of language to image regions. Specifically, some heads can map entities to image regions, performing the task known as entity grounding. Some heads can even detect the syntactic relations between non-entity words and image regions, tracking, for example, associations between verbs and regions corresponding to their arguments. We denote this ability as syntactic grounding. We verify grounding both quantitatively and qualitatively, using Flickr30K Entities as a testbed.

pdf bib
Evaluating and Enhancing the Robustness of Neural Network-based Dependency Parsing Models with Adversarial Examples
Xiaoqing Zheng | Jiehang Zeng | Yi Zhou | Cho-Jui Hsieh | Minhao Cheng | Xuanjing Huang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Despite achieving prominent performance on many important tasks, it has been reported that neural networks are vulnerable to adversarial examples. Previously studies along this line mainly focused on semantic tasks such as sentiment analysis, question answering and reading comprehension. In this study, we show that adversarial examples also exist in dependency parsing: we propose two approaches to study where and how parsers make mistakes by searching over perturbations to existing texts at sentence and phrase levels, and design algorithms to construct such examples in both of the black-box and white-box settings. Our experiments with one of state-of-the-art parsers on the English Penn Treebank (PTB) show that up to 77% of input examples admit adversarial perturbations, and we also show that the robustness of parsing models can be improved by crafting high-quality adversaries and including them in the training stage, while suffering little to no performance drop on the clean input data.


pdf bib
Efficient Contextual Representation Learning With Continuous Outputs
Liunian Harold Li | Patrick H. Chen | Cho-Jui Hsieh | Kai-Wei Chang
Transactions of the Association for Computational Linguistics, Volume 7

Contextual representation models have achieved great success in improving various downstream natural language processing tasks. However, these language-model-based encoders are difficult to train due to their large parameter size and high computational complexity. By carefully examining the training procedure, we observe that the softmax layer, which predicts a distribution of the target word, often induces significant overhead, especially when the vocabulary size is large. Therefore, we revisit the design of the output layer and consider directly predicting the pre-trained embedding of the target word for a given context. When applied to ELMo, the proposed approach achieves a 4-fold speedup and eliminates 80% trainable parameters while achieving competitive performance on downstream tasks. Further analysis shows that the approach maintains the speed advantage under various settings, even when the sentence encoder is scaled up.

pdf bib
MulCode: A Multiplicative Multi-way Model for Compressing Neural Language Model
Yukun Ma | Patrick H. Chen | Cho-Jui Hsieh
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

It is challenging to deploy deep neural nets on memory-constrained devices due to the explosion of numbers of parameters. Especially, the input embedding layer and Softmax layer usually dominate the memory usage in an RNN-based language model. For example, input embedding and Softmax matrices in IWSLT-2014 German-to-English data set account for more than 80% of the total model parameters. To compress these embedding layers, we propose MulCode, a novel multi-way multiplicative neural compressor. MulCode learns an adaptively created matrix and its multiplicative compositions. Together with a prior weighted loss, Multicode is more effective than the state-of-the-art compression methods. On the IWSLT-2014 machine translation data set, MulCode achieved 17 times compression rate for the embedding and Softmax matrices, and when combined with quantization technique, our method can achieve 41.38 times compression rate with very little loss in performance.

pdf bib
On the Robustness of Self-Attentive Models
Yu-Lun Hsieh | Minhao Cheng | Da-Cheng Juan | Wei Wei | Wen-Lian Hsu | Cho-Jui Hsieh
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This work examines the robustness of self-attentive neural networks against adversarial input perturbations. Specifically, we investigate the attention and feature extraction mechanisms of state-of-the-art recurrent neural networks and self-attentive architectures for sentiment analysis, entailment and machine translation under adversarial attacks. We also propose a novel attack algorithm for generating more natural adversarial examples that could mislead neural models but not humans. Experimental results show that, compared to recurrent neural models, self-attentive models are more robust against adversarial perturbation. In addition, we provide theoretical explanations for their superior robustness to support our claims.

pdf bib
Evaluating and Enhancing the Robustness of Dialogue Systems: A Case Study on a Negotiation Agent
Minhao Cheng | Wei Wei | Cho-Jui Hsieh
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Recent research has demonstrated that goal-oriented dialogue agents trained on large datasets can achieve striking performance when interacting with human users. In real world applications, however, it is important to ensure that the agent performs smoothly interacting with not only regular users but also those malicious ones who would attack the system through interactions in order to achieve goals for their own advantage. In this paper, we develop algorithms to evaluate the robustness of a dialogue agent by carefully designed attacks using adversarial agents. Those attacks are performed in both black-box and white-box settings. Furthermore, we demonstrate that adversarial training using our attacks can significantly improve the robustness of a goal-oriented dialogue system. On a case-study of the negotiation agent developed by (Lewis et al., 2017), our attacks reduced the average advantage of rewards between the attacker and the trained RL-based agent from 2.68 to -5.76 on a scale from -10 to 10 for randomized goals. Moreover, we show that with the adversarial training, we are able to improve the robustness of negotiation agents by 1.5 points on average against all our attacks.


pdf bib
Learning Word Embeddings for Low-Resource Languages by PU Learning
Chao Jiang | Hsiang-Fu Yu | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Word embedding is a key component in many downstream applications in processing natural languages. Existing approaches often assume the existence of a large collection of text for learning effective word embedding. However, such a corpus may not be available for some low-resource languages. In this paper, we study how to effectively learn a word embedding model on a corpus with only a few million tokens. In such a situation, the co-occurrence matrix is sparse as the co-occurrences of many word pairs are unobserved. In contrast to existing approaches often only sample a few unobserved word pairs as negative samples, we argue that the zero entries in the co-occurrence matrix also provide valuable information. We then design a Positive-Unlabeled Learning (PU-Learning) approach to factorize the co-occurrence matrix and validate the proposed approaches in four different languages.

pdf bib
Attacking Visual Language Grounding with Adversarial Examples: A Case Study on Neural Image Captioning
Hongge Chen | Huan Zhang | Pin-Yu Chen | Jinfeng Yi | Cho-Jui Hsieh
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Visual language grounding is widely studied in modern neural image captioning systems, which typically adopts an encoder-decoder framework consisting of two principal components: a convolutional neural network (CNN) for image feature extraction and a recurrent neural network (RNN) for language caption generation. To study the robustness of language grounding to adversarial perturbations in machine vision and perception, we propose Show-and-Fool, a novel algorithm for crafting adversarial examples in neural image captioning. The proposed algorithm provides two evaluation approaches, which check if we can mislead neural image captioning systems to output some randomly chosen captions or keywords. Our extensive experiments show that our algorithm can successfully craft visually-similar adversarial examples with randomly targeted captions or keywords, and the adversarial examples can be made highly transferable to other image captioning systems. Consequently, our approach leads to new robustness implications of neural image captioning and novel insights in visual language grounding.


pdf bib
Iterative Scaling and Coordinate Descent Methods for Maximum Entropy
Fang-Lan Huang | Cho-Jui Hsieh | Kai-Wei Chang | Chih-Jen Lin
Proceedings of the ACL-IJCNLP 2009 Conference Short Papers