Chen Gong


pdf bib
Multi-grained Chinese Word Segmentation with Weakly Labeled Data
Chen Gong | Zhenghua Li | Bowei Zou | Min Zhang
Proceedings of the 28th International Conference on Computational Linguistics

In contrast with the traditional single-grained word segmentation (SWS), where a sentence corresponds to a single word sequence, multi-grained Chinese word segmentation (MWS) aims to segment a sentence into multiple word sequences to preserve all words of different granularities. Due to the lack of manually annotated MWS data, previous work train and tune MWS models only on automatically generated pseudo MWS data. In this work, we further take advantage of the rich word boundary information in existing SWS data and naturally annotated data from dictionary example (DictEx) sentences, to advance the state-of-the-art MWS model based on the idea of weak supervision. Particularly, we propose to accommodate two types of weakly labeled data for MWS, i.e., SWS data and DictEx data by employing a simple yet competitive graph-based parser with local loss. Besides, we manually annotate a high-quality MWS dataset according to our newly compiled annotation guideline, consisting of over 9,000 sentences from two types of texts, i.e., canonical newswire (NEWS) and non-canonical web (BAIKE) data for better evaluation. Detailed evaluation shows that our proposed model with weakly labeled data significantly outperforms the state-of-the-art MWS model by 1.12 and 5.97 on NEWS and BAIKE data in F1.


pdf bib
Multi-Grained Chinese Word Segmentation
Chen Gong | Zhenghua Li | Min Zhang | Xinzhou Jiang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Traditionally, word segmentation (WS) adopts the single-grained formalism, where a sentence corresponds to a single word sequence. However, Sproat et al. (1997) show that the inter-native-speaker consistency ratio over Chinese word boundaries is only 76%, indicating single-grained WS (SWS) imposes unnecessary challenges on both manual annotation and statistical modeling. Moreover, WS results of different granularities can be complementary and beneficial for high-level applications. This work proposes and addresses multi-grained WS (MWS). We build a large-scale pseudo MWS dataset for model training and tuning by leveraging the annotation heterogeneity of three SWS datasets. Then we manually annotate 1,500 test sentences with true MWS annotations. Finally, we propose three benchmark approaches by casting MWS as constituent parsing and sequence labeling. Experiments and analysis lead to many interesting findings.