Catherine Finegan-Dollak


pdf bib
Label Noise in Context
Michael Desmond | Catherine Finegan-Dollak | Jeff Boston | Matt Arnold
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Label noise—incorrectly or ambiguously labeled training examples—can negatively impact model performance. Although noise detection techniques have been around for decades, practitioners rarely apply them, as manual noise remediation is a tedious process. Examples incorrectly flagged as noise waste reviewers’ time, and correcting label noise without guidance can be difficult. We propose LNIC, a noise-detection method that uses an example’s neighborhood within the training set to (a) reduce false positives and (b) provide an explanation as to why the ex- ample was flagged as noise. We demonstrate on several short-text classification datasets that LNIC outperforms the state of the art on measures of precision and F0.5-score. We also show how LNIC’s training set context helps a reviewer to understand and correct label noise in a dataset. The LNIC tool lowers the barriers to label noise remediation, increasing its utility for NLP practitioners.

pdf bib
Layout-Aware Text Representations Harm Clustering Documents by Type
Catherine Finegan-Dollak | Ashish Verma
Proceedings of the First Workshop on Insights from Negative Results in NLP

Clustering documents by type—grouping invoices with invoices and articles with articles—is a desirable first step for organizing large collections of document scans. Humans approaching this task use both the semantics of the text and the document layout to assist in grouping like documents. LayoutLM (Xu et al., 2019), a layout-aware transformer built on top of BERT with state-of-the-art performance on document-type classification, could reasonably be expected to outperform regular BERT (Devlin et al., 2018) for document-type clustering. However, we find experimentally that BERT significantly outperforms LayoutLM on this task (p <0.001). We analyze clusters to show where layout awareness is an asset and where it is a liability.


pdf bib
Effective Crowdsourcing for a New Type of Summarization Task
Youxuan Jiang | Catherine Finegan-Dollak | Jonathan K. Kummerfeld | Walter Lasecki
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Most summarization research focuses on summarizing the entire given text, but in practice readers are often interested in only one aspect of the document or conversation. We propose targeted summarization as an umbrella category for summarization tasks that intentionally consider only parts of the input data. This covers query-based summarization, update summarization, and a new task we propose where the goal is to summarize a particular aspect of a document. However, collecting data for this new task is hard because directly asking annotators (e.g., crowd workers) to write summaries leads to data with low accuracy when there are a large number of facts to include. We introduce a novel crowdsourcing workflow, Pin-Refine, that allows us to collect high-quality summaries for our task, a necessary step for the development of automatic systems.

pdf bib
Improving Text-to-SQL Evaluation Methodology
Catherine Finegan-Dollak | Jonathan K. Kummerfeld | Li Zhang | Karthik Ramanathan | Sesh Sadasivam | Rui Zhang | Dragomir Radev
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

To be informative, an evaluation must measure how well systems generalize to realistic unseen data. We identify limitations of and propose improvements to current evaluations of text-to-SQL systems. First, we compare human-generated and automatically generated questions, characterizing properties of queries necessary for real-world applications. To facilitate evaluation on multiple datasets, we release standardized and improved versions of seven existing datasets and one new text-to-SQL dataset. Second, we show that the current division of data into training and test sets measures robustness to variations in the way questions are asked, but only partially tests how well systems generalize to new queries; therefore, we propose a complementary dataset split for evaluation of future work. Finally, we demonstrate how the common practice of anonymizing variables during evaluation removes an important challenge of the task. Our observations highlight key difficulties, and our methodology enables effective measurement of future development.


pdf bib
Effects of Creativity and Cluster Tightness on Short Text Clustering Performance
Catherine Finegan-Dollak | Reed Coke | Rui Zhang | Xiangyi Ye | Dragomir Radev
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)


pdf bib
Content Models for Survey Generation: A Factoid-Based Evaluation
Rahul Jha | Catherine Finegan-Dollak | Ben King | Reed Coke | Dragomir Radev
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)