Bowen Zhang


2020

pdf bib
Enhancing Cross-target Stance Detection with Transferable Semantic-Emotion Knowledge
Bowen Zhang | Min Yang | Xutao Li | Yunming Ye | Xiaofei Xu | Kuai Dai
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Stance detection is an important task, which aims to classify the attitude of an opinionated text towards a given target. Remarkable success has been achieved when sufficient labeled training data is available. However, annotating sufficient data is labor-intensive, which establishes significant barriers for generalizing the stance classifier to the data with new targets. In this paper, we proposed a Semantic-Emotion Knowledge Transferring (SEKT) model for cross-target stance detection, which uses the external knowledge (semantic and emotion lexicons) as a bridge to enable knowledge transfer across different targets. Specifically, a semantic-emotion heterogeneous graph is constructed from external semantic and emotion lexicons, which is then fed into a graph convolutional network to learn multi-hop semantic connections between words and emotion tags. Then, the learned semantic-emotion graph representation, which serves as prior knowledge bridging the gap between the source and target domains, is fully integrated into the bidirectional long short-term memory (BiLSTM) stance classifier by adding a novel knowledge-aware memory unit to the BiLSTM cell. Extensive experiments on a large real-world dataset demonstrate the superiority of SEKT against the state-of-the-art baseline methods.

pdf bib
Learning to Represent Image and Text with Denotation Graph
Bowen Zhang | Hexiang Hu | Vihan Jain | Eugene Ie | Fei Sha
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Learning to fuse vision and language information and representing them is an important research problem with many applications. Recent progresses have leveraged the ideas of pre-training (from language modeling) and attention layers in Transformers to learn representation from datasets containing images aligned with linguistic expressions that describe the images. In this paper, we propose learning representations from a set of implied, visually grounded expressions between image and text, automatically mined from those datasets. In particular, we use denotation graphs to represent how specific concepts (such as sentences describing images) can be linked to abstract and generic concepts (such as short phrases) that are also visually grounded. This type of generic-to-specific relations can be discovered using linguistic analysis tools. We propose methods to incorporate such relations into learning representation. We show that state-of-the-art multimodal learning models can be further improved by leveraging automatically harvested structural relations. The representations lead to stronger empirical results on downstream tasks of cross-modal image retrieval, referring expression, and compositional attribute-object recognition. Both our codes and the extracted denotation graphs on the Flickr30K and the COCO datasets are publically available on https://sha-lab.github.io/DG.

2018

pdf bib
A Probabilistic Model for Joint Learning of Word Embeddings from Texts and Images
Melissa Ailem | Bowen Zhang | Aurelien Bellet | Pascal Denis | Fei Sha
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Several recent studies have shown the benefits of combining language and perception to infer word embeddings. These multimodal approaches either simply combine pre-trained textual and visual representations (e.g. features extracted from convolutional neural networks), or use the latter to bias the learning of textual word embeddings. In this work, we propose a novel probabilistic model to formalize how linguistic and perceptual inputs can work in concert to explain the observed word-context pairs in a text corpus. Our approach learns textual and visual representations jointly: latent visual factors couple together a skip-gram model for co-occurrence in linguistic data and a generative latent variable model for visual data. Extensive experimental studies validate the proposed model. Concretely, on the tasks of assessing pairwise word similarity and image/caption retrieval, our approach attains equally competitive or stronger results when compared to other state-of-the-art multimodal models.