Bill McDowell


pdf bib
Simultaneous Translation and Paraphrase for Language Education
Stephen Mayhew | Klinton Bicknell | Chris Brust | Bill McDowell | Will Monroe | Burr Settles
Proceedings of the Fourth Workshop on Neural Generation and Translation

We present the task of Simultaneous Translation and Paraphrasing for Language Education (STAPLE). Given a prompt in one language, the goal is to generate a diverse set of correct translations that language learners are likely to produce. This is motivated by the need to create and maintain large, high-quality sets of acceptable translations for exercises in a language-learning application, and synthesizes work spanning machine translation, MT evaluation, automatic paraphrasing, and language education technology. We developed a novel corpus with unique properties for five languages (Hungarian, Japanese, Korean, Portuguese, and Vietnamese), and report on the results of a shared task challenge which attracted 20 teams to solve the task. In our meta-analysis, we focus on three aspects of the resulting systems: external training corpus selection, model architecture and training decisions, and decoding and filtering strategies. We find that strong systems start with a large amount of generic training data, and then fine-tune with in-domain data, sampled according to our provided learner response frequencies.


pdf bib
Learning from Omission
Bill McDowell | Noah Goodman
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Pragmatic reasoning allows humans to go beyond the literal meaning when interpret- ing language in context. Previous work has shown that such reasoning can improve the performance of already-trained language understanding systems. Here, we explore whether pragmatic reasoning during training can improve the quality of learned meanings. Our experiments on reference game data show that end-to-end pragmatic training produces more accurate utterance interpretation models, especially when data is sparse and language is complex.


pdf bib
Event Ordering with a Generalized Model for Sieve Prediction Ranking
Bill McDowell | Nathanael Chambers | Alexander Ororbia II | David Reitter
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

This paper improves on several aspects of a sieve-based event ordering architecture, CAEVO (Chambers et al., 2014), which creates globally consistent temporal relations between events and time expressions. First, we examine the usage of word embeddings and semantic role features. With the incorporation of these new features, we demonstrate a 5% relative F1 gain over our replicated version of CAEVO. Second, we reformulate the architecture’s sieve-based inference algorithm as a prediction reranking method that approximately optimizes a scoring function computed using classifier precisions. Within this prediction reranking framework, we propose an alternative scoring function, showing an 8.8% relative gain over the original CAEVO. We further include an in-depth analysis of one of the main datasets that is used to evaluate temporal classifiers, and we show how despite using the densest corpus, there is still a danger of overfitting. While this paper focuses on temporal ordering, its results are applicable to other areas that use sieve-based architectures.


pdf bib
An Annotation Framework for Dense Event Ordering
Taylor Cassidy | Bill McDowell | Nathanael Chambers | Steven Bethard
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf bib
Dense Event Ordering with a Multi-Pass Architecture
Nathanael Chambers | Taylor Cassidy | Bill McDowell | Steven Bethard
Transactions of the Association for Computational Linguistics, Volume 2

The past 10 years of event ordering research has focused on learning partial orderings over document events and time expressions. The most popular corpus, the TimeBank, contains a small subset of the possible ordering graph. Many evaluations follow suit by only testing certain pairs of events (e.g., only main verbs of neighboring sentences). This has led most research to focus on specific learners for partial labelings. This paper attempts to nudge the discussion from identifying some relations to all relations. We present new experiments on strongly connected event graphs that contain ∼10 times more relations per document than the TimeBank. We also describe a shift away from the single learner to a sieve-based architecture that naturally blends multiple learners into a precision-ranked cascade of sieves. Each sieve adds labels to the event graph one at a time, and earlier sieves inform later ones through transitive closure. This paper thus describes innovations in both approach and task. We experiment on the densest event graphs to date and show a 14% gain over state-of-the-art.