Ben Athiwaratkun


pdf bib
Augmented Natural Language for Generative Sequence Labeling
Ben Athiwaratkun | Cicero Nogueira dos Santos | Jason Krone | Bing Xiang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We propose a generative framework for joint sequence labeling and sentence-level classification. Our model performs multiple sequence labeling tasks at once using a single, shared natural language output space. Unlike prior discriminative methods, our model naturally incorporates label semantics and shares knowledge across tasks. Our framework general purpose, performing well on few-shot learning, low resource, and high resource tasks. We demonstrate these advantages on popular named entity recognition, slot labeling, and intent classification benchmarks. We set a new state-of-the-art for few-shot slot labeling, improving substantially upon the previous 5-shot (75.0% to 90.9%) and 1-shot (70.4% to 81.0%) state-of-the-art results. Furthermore, our model generates large improvements (46.27% to 63.83%) in low resource slot labeling over a BERT baseline by incorporating label semantics. We also maintain competitive results on high resource tasks, performing within two points of the state-of-the-art on all tasks and setting a new state-of-the-art on the SNIPS dataset.


pdf bib
Adversarial Deep Averaging Networks for Cross-Lingual Sentiment Classification
Xilun Chen | Yu Sun | Ben Athiwaratkun | Claire Cardie | Kilian Weinberger
Transactions of the Association for Computational Linguistics, Volume 6

In recent years great success has been achieved in sentiment classification for English, thanks in part to the availability of copious annotated resources. Unfortunately, most languages do not enjoy such an abundance of labeled data. To tackle the sentiment classification problem in low-resource languages without adequate annotated data, we propose an Adversarial Deep Averaging Network (ADAN1) to transfer the knowledge learned from labeled data on a resource-rich source language to low-resource languages where only unlabeled data exist. ADAN has two discriminative branches: a sentiment classifier and an adversarial language discriminator. Both branches take input from a shared feature extractor to learn hidden representations that are simultaneously indicative for the classification task and invariant across languages. Experiments on Chinese and Arabic sentiment classification demonstrate that ADAN significantly outperforms state-of-the-art systems.

pdf bib
Probabilistic FastText for Multi-Sense Word Embeddings
Ben Athiwaratkun | Andrew Wilson | Anima Anandkumar
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce Probabilistic FastText, a new model for word embeddings that can capture multiple word senses, sub-word structure, and uncertainty information. In particular, we represent each word with a Gaussian mixture density, where the mean of a mixture component is given by the sum of n-grams. This representation allows the model to share the “strength” across sub-word structures (e.g. Latin roots), producing accurate representations of rare, misspelt, or even unseen words. Moreover, each component of the mixture can capture a different word sense. Probabilistic FastText outperforms both FastText, which has no probabilistic model, and dictionary-level probabilistic embeddings, which do not incorporate subword structures, on several word-similarity benchmarks, including English RareWord and foreign language datasets. We also achieve state-of-art performance on benchmarks that measure ability to discern different meanings. Thus, our model is the first to achieve best of both the worlds: multi-sense representations while having enriched semantics on rare words.


pdf bib
Multimodal Word Distributions
Ben Athiwaratkun | Andrew Wilson
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Word embeddings provide point representations of words containing useful semantic information. We introduce multimodal word distributions formed from Gaussian mixtures, for multiple word meanings, entailment, and rich uncertainty information. To learn these distributions, we propose an energy-based max-margin objective. We show that the resulting approach captures uniquely expressive semantic information, and outperforms alternatives, such as word2vec skip-grams, and Gaussian embeddings, on benchmark datasets such as word similarity and entailment.