Bei Li


pdf bib
Does Multi-Encoder Help? A Case Study on Context-Aware Neural Machine Translation
Bei Li | Hui Liu | Ziyang Wang | Yufan Jiang | Tong Xiao | Jingbo Zhu | Tongran Liu | Changliang Li
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In encoder-decoder neural models, multiple encoders are in general used to represent the contextual information in addition to the individual sentence. In this paper, we investigate multi-encoder approaches in document-level neural machine translation (NMT). Surprisingly, we find that the context encoder does not only encode the surrounding sentences but also behaves as a noise generator. This makes us rethink the real benefits of multi-encoder in context-aware translation - some of the improvements come from robust training. We compare several methods that introduce noise and/or well-tuned dropout setup into the training of these encoders. Experimental results show that noisy training plays an important role in multi-encoder-based NMT, especially when the training data is small. Also, we establish a new state-of-the-art on IWSLT Fr-En task by careful use of noise generation and dropout methods.

pdf bib
The NiuTrans System for WNGT 2020 Efficiency Task
Chi Hu | Bei Li | Yinqiao Li | Ye Lin | Yanyang Li | Chenglong Wang | Tong Xiao | Jingbo Zhu
Proceedings of the Fourth Workshop on Neural Generation and Translation

This paper describes the submissions of the NiuTrans Team to the WNGT 2020 Efficiency Shared Task. We focus on the efficient implementation of deep Transformer models (Wang et al., 2019; Li et al., 2019) using NiuTensor, a flexible toolkit for NLP tasks. We explored the combination of deep encoder and shallow decoder in Transformer models via model compression and knowledge distillation. The neural machine translation decoding also benefits from FP16 inference, attention caching, dynamic batching, and batch pruning. Our systems achieve promising results in both translation quality and efficiency, e.g., our fastest system can translate more than 40,000 tokens per second with an RTX 2080 Ti while maintaining 42.9 BLEU on newstest2018.

pdf bib
Shallow-to-Deep Training for Neural Machine Translation
Bei Li | Ziyang Wang | Hui Liu | Yufan Jiang | Quan Du | Tong Xiao | Huizhen Wang | Jingbo Zhu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Deep encoders have been proven to be effective in improving neural machine translation (NMT) systems, but training an extremely deep encoder is time consuming. Moreover, why deep models help NMT is an open question. In this paper, we investigate the behavior of a well-tuned deep Transformer system. We find that stacking layers is helpful in improving the representation ability of NMT models and adjacent layers perform similarly. This inspires us to develop a shallow-to-deep training method that learns deep models by stacking shallow models. In this way, we successfully train a Transformer system with a 54-layer encoder. Experimental results on WMT’16 English-German and WMT’14 English-French translation tasks show that it is 1:4 faster than training from scratch, and achieves a BLEU score of 30:33 and 43:29 on two tasks. The code is publicly available at


pdf bib
Learning Deep Transformer Models for Machine Translation
Qiang Wang | Bei Li | Tong Xiao | Jingbo Zhu | Changliang Li | Derek F. Wong | Lidia S. Chao
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Transformer is the state-of-the-art model in recent machine translation evaluations. Two strands of research are promising to improve models of this kind: the first uses wide networks (a.k.a. Transformer-Big) and has been the de facto standard for development of the Transformer system, and the other uses deeper language representation but faces the difficulty arising from learning deep networks. Here, we continue the line of research on the latter. We claim that a truly deep Transformer model can surpass the Transformer-Big counterpart by 1) proper use of layer normalization and 2) a novel way of passing the combination of previous layers to the next. On WMT’16 English-German and NIST OpenMT’12 Chinese-English tasks, our deep system (30/25-layer encoder) outperforms the shallow Transformer-Big/Base baseline (6-layer encoder) by 0.4-2.4 BLEU points. As another bonus, the deep model is 1.6X smaller in size and 3X faster in training than Transformer-Big.

pdf bib
The NiuTrans Machine Translation Systems for WMT19
Bei Li | Yinqiao Li | Chen Xu | Ye Lin | Jiqiang Liu | Hui Liu | Ziyang Wang | Yuhao Zhang | Nuo Xu | Zeyang Wang | Kai Feng | Hexuan Chen | Tengbo Liu | Yanyang Li | Qiang Wang | Tong Xiao | Jingbo Zhu
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

This paper described NiuTrans neural machine translation systems for the WMT 2019 news translation tasks. We participated in 13 translation directions, including 11 supervised tasks, namely EN↔{ZH, DE, RU, KK, LT}, GU→EN and the unsupervised DE↔CS sub-track. Our systems were built on Deep Transformer and several back-translation methods. Iterative knowledge distillation and ensemble+reranking were also employed to obtain stronger models. Our unsupervised submissions were based on NMT enhanced by SMT. As a result, we achieved the highest BLEU scores in {KK↔EN, GU→EN} directions, ranking 2nd in {RU→EN, DE↔CS} and 3rd in {ZH→EN, LT→EN, EN→RU, EN↔DE} among all constrained submissions.


pdf bib
The NiuTrans Machine Translation System for WMT18
Qiang Wang | Bei Li | Jiqiang Liu | Bojian Jiang | Zheyang Zhang | Yinqiao Li | Ye Lin | Tong Xiao | Jingbo Zhu
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

This paper describes the submission of the NiuTrans neural machine translation system for the WMT 2018 Chinese ↔ English news translation tasks. Our baseline systems are based on the Transformer architecture. We further improve the translation performance 2.4-2.6 BLEU points from four aspects, including architectural improvements, diverse ensemble decoding, reranking, and post-processing. Among constrained submissions, we rank 2nd out of 16 submitted systems on Chinese → English task and 3rd out of 16 on English → Chinese task, respectively.

pdf bib
Perceptual evaluation of Mandarin tone sandhi production by Cantonese speakers before and after perceptual training
Bei Li | Yike Yang | Si Chen
Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation