Bardia Rafieian


pdf bib
E-Commerce Content and Collaborative-based Recommendation using K-Nearest Neighbors and Enriched Weighted Vectors
Bardia Rafieian | Marta R. Costa-jussà
Proceedings of Workshop on Natural Language Processing in E-Commerce

In this paper, we present two productive and functional recommender methods to improve the ac- curacy of predicting the right product for the user. One proposal is a survey-based recommender system that uses k-nearest neighbors. It recommends products by asking questions from the user, efficiently applying a binary product vector to the product attributes, and processing the request with a minimum error. The second proposal uses an enriched collaborative-based recommender system using enriched weighted vectors. Thanks to the style rules, the enriched collaborative- based method recommends outfits with competitive recommendation quality. We evaluated both of the proposals on a Kaggle fashion-dataset along with iMaterialist and, results show equivalent performance on binary gender and product attributes.

pdf bib
Enhancing Word Embeddings with Knowledge Extracted from Lexical Resources
Magdalena Biesialska | Bardia Rafieian | Marta R. Costa-jussà
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

In this work, we present an effective method for semantic specialization of word vector representations. To this end, we use traditional word embeddings and apply specialization methods to better capture semantic relations between words. In our approach, we leverage external knowledge from rich lexical resources such as BabelNet. We also show that our proposed post-specialization method based on an adversarial neural network with the Wasserstein distance allows to gain improvements over state-of-the-art methods on two tasks: word similarity and dialog state tracking.


pdf bib
Terminology-Aware Segmentation and Domain Feature for the WMT19 Biomedical Translation Task
Casimiro Pio Carrino | Bardia Rafieian | Marta R. Costa-jussà | José A. R. Fonollosa
Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)

In this work, we give a description of the TALP-UPC systems submitted for the WMT19 Biomedical Translation Task. Our proposed strategy is NMT model-independent and relies only on one ingredient, a biomedical terminology list. We first extracted such a terminology list by labelling biomedical words in our training dataset using the BabelNet API. Then, we designed a data preparation strategy to insert the terms information at a token level. Finally, we trained the Transformer model with this terms-informed data. Our best-submitted system ranked 2nd and 3rd for Spanish-English and English-Spanish translation directions, respectively.