Arun Chaganty


pdf bib
Textual Analogy Parsing: What’s Shared and What’s Compared among Analogous Facts
Matthew Lamm | Arun Chaganty | Christopher D. Manning | Dan Jurafsky | Percy Liang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

To understand a sentence like “whereas only 10% of White Americans live at or below the poverty line, 28% of African Americans do” it is important not only to identify individual facts, e.g., poverty rates of distinct demographic groups, but also the higher-order relations between them, e.g., the disparity between them. In this paper, we propose the task of Textual Analogy Parsing (TAP) to model this higher-order meaning. Given a sentence such as the one above, TAP outputs a frame-style meaning representation which explicitly specifies what is shared (e.g., poverty rates) and what is compared (e.g., White Americans vs. African Americans, 10% vs. 28%) between its component facts. Such a meaning representation can enable new applications that rely on discourse understanding such as automated chart generation from quantitative text. We present a new dataset for TAP, baselines, and a model that successfully uses an ILP to enforce the structural constraints of the problem.

pdf bib
The price of debiasing automatic metrics in natural language evalaution
Arun Chaganty | Stephen Mussmann | Percy Liang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

For evaluating generation systems, automatic metrics such as BLEU cost nothing to run but have been shown to correlate poorly with human judgment, leading to systematic bias against certain model improvements. On the other hand, averaging human judgments, the unbiased gold standard, is often too expensive. In this paper, we use control variates to combine automatic metrics with human evaluation to obtain an unbiased estimator with lower cost than human evaluation alone. In practice, however, we obtain only a 7-13% cost reduction on evaluating summarization and open-response question answering systems. We then prove that our estimator is optimal: there is no unbiased estimator with lower cost. Our theory further highlights the two fundamental bottlenecks—the automatic metric and the prompt shown to human evaluators—both of which need to be improved to obtain greater cost savings.


pdf bib
Importance sampling for unbiased on-demand evaluation of knowledge base population
Arun Chaganty | Ashwin Paranjape | Percy Liang | Christopher D. Manning
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Knowledge base population (KBP) systems take in a large document corpus and extract entities and their relations. Thus far, KBP evaluation has relied on judgements on the pooled predictions of existing systems. We show that this evaluation is problematic: when a new system predicts a previously unseen relation, it is penalized even if it is correct. This leads to significant bias against new systems, which counterproductively discourages innovation in the field. Our first contribution is a new importance-sampling based evaluation which corrects for this bias by annotating a new system’s predictions on-demand via crowdsourcing. We show this eliminates bias and reduces variance using data from the 2015 TAC KBP task. Our second contribution is an implementation of our method made publicly available as an online KBP evaluation service. We pilot the service by testing diverse state-of-the-art systems on the TAC KBP 2016 corpus and obtain accurate scores in a cost effective manner.


pdf bib
How Much is 131 Million Dollars? Putting Numbers in Perspective with Compositional Descriptions
Arun Chaganty | Percy Liang
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)