Anthony Larcher


2020

pdf bib
Evaluation of Lifelong Learning Systems
Yevhenii Prokopalo | Sylvain Meignier | Olivier Galibert | Loic Barrault | Anthony Larcher
Proceedings of the 12th Language Resources and Evaluation Conference

Current intelligent systems need the expensive support of machine learning experts to sustain their performance level when used on a daily basis. To reduce this cost, i.e. remaining free from any machine learning expert, it is reasonable to implement lifelong (or continuous) learning intelligent systems that will continuously adapt their model when facing changing execution conditions. In this work, the systems are allowed to refer to human domain experts who can provide the system with relevant knowledge about the task. Nowadays, the fast growth of lifelong learning systems development rises the question of their evaluation. In this article we propose a generic evaluation methodology for the specific case of lifelong learning systems. Two steps will be considered. First, the evaluation of human-assisted learning (including active and/or interactive learning) outside the context of lifelong learning. Second, the system evaluation across time, with propositions of how a lifelong learning intelligent system should be evaluated when including human assisted learning or not.

pdf bib
Évaluation de systèmes apprenant tout au long de la vie (Evaluation of lifelong learning systems )
Yevhenii Prokopalo | Sylvain Meignier | Olivier Galibert | Loïc Barrault | Anthony Larcher
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 1 : Journées d'Études sur la Parole

Aujourd’hui les systèmes intelligents obtiennent d’excellentes performances dans de nombreux domaines lorsqu’ils sont entraînés par des experts en apprentissage automatique. Lorsque ces systèmes sont mis en production, leurs performances se dégradent au cours du temps du fait de l’évolution de leur environnement réel. Une adaptation de leur modèle par des experts en apprentissage automatique est possible mais très coûteuse alors que les sociétés utilisant ces systèmes disposent d’experts du domaine qui pourraient accompagner ces systèmes dans un apprentissage tout au long de la vie. Dans cet article nous proposons un cadre d’évaluation générique pour des systèmes apprenant tout au long de la vie (SATLV). Nous proposons d’évaluer l’apprentissage assisté par l’humain (actif ou interactif) et l’apprentissage au cours du temps.

2016

pdf bib
Autoapprentissage pour le regroupement en locuteurs : premières investigations (First investigations on self trained speaker diarization )
Gaël Le Lan | Sylvain Meignier | Delphine Charlet | Anthony Larcher
Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 1 : JEP

This paper investigates self trained cross-show speaker diarization applied to collections of French TV archives, based on an i-vector/PLDA framework. The parameters used for i-vectors extraction and PLDA scoring are trained in a unsupervised way, using the data of the collection itself. Performances are compared, using combinations of target data and external data for training. The experimental results on two distinct target corpora show that using data from the corpora themselves to perform unsupervised iterative training and domain adaptation of PLDA parameters can improve an existing system, trained on external annotated data. Such results indicate that performing speaker indexation on small collections of unlabeled audio archives should only rely on the availability of a sufficient external corpus, which can be specifically adapted to every target collection. We show that a minimum collection size is required to exclude the use of such an external bootstrap.

pdf bib
Exploration de paramètres acoustiques dérivés de GMM pour l’adaptation non supervisée de modèles acoustiques à base de réseaux de neurones profonds (Exploring GMM-derived features for unsupervised adaptation of deep neural network acoustic models)
Natalia Tomashenko | Yuri Khokhlov | Anthony Larcher | Yannick Estève
Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 1 : JEP

L’étude présentée dans cet article améliore une méthode récemment proposée pour l’adaptation de modèles acoustiques markoviens couplés à un réseau de neurones profond (DNN-HMM). Cette méthode d’adaptation utilise des paramètres acoustiques dérivés de mixtures de modèles Gaussiens (GMM-derived features, GMMD ). L’amélioration provient de l’emploi de scores et de mesures de confiance calculés à partir de graphes construits dans le cadre d’un algorithme d’adaptation conventionnel dit de maximum a posteriori (MAP). Une version modifiée de l’adaptation MAP est appliquée sur le modèle GMM auxiliaire utilisé dans une procédure d’apprentissage adaptatif au locuteur (speaker adaptative training, SAT) lors de l’apprentissage du DNN. Des expériences menées sur le corpus Wall Street Journal (WSJ0) montrent que la technique d’adaptation non supervisée proposée dans cet article permet une réduction relative de 8, 4% du taux d’erreurs sur les mots (WER), par rapport aux résultats obtenus avec des modèles DNN-HMM indépendants du locuteur utilisant des paramètres acoustiques plus conventionnels.

2012

pdf bib
Analyse en Composante Principale pour l’extraction des i-vecteurs en vérification du locuteur (Principal Component Analysis for i-vector extraction in speaker verification.) [in French]
Anthony Larcher | Pierre-Michel Bousquet | Driss Matrouf | Jean-Francois Bonastre
Proceedings of the Joint Conference JEP-TALN-RECITAL 2012, volume 1: JEP