Anisia Katinskaia


2020

pdf bib
Creating Expert Knowledge by Relying on Language Learners: a Generic Approach for Mass-Producing Language Resources by Combining Implicit Crowdsourcing and Language Learning
Lionel Nicolas | Verena Lyding | Claudia Borg | Corina Forascu | Karën Fort | Katerina Zdravkova | Iztok Kosem | Jaka Čibej | Špela Arhar Holdt | Alice Millour | Alexander König | Christos Rodosthenous | Federico Sangati | Umair ul Hassan | Anisia Katinskaia | Anabela Barreiro | Lavinia Aparaschivei | Yaakov HaCohen-Kerner
Proceedings of the 12th Language Resources and Evaluation Conference

We introduce in this paper a generic approach to combine implicit crowdsourcing and language learning in order to mass-produce language resources (LRs) for any language for which a crowd of language learners can be involved. We present the approach by explaining its core paradigm that consists in pairing specific types of LRs with specific exercises, by detailing both its strengths and challenges, and by discussing how much these challenges have been addressed at present. Accordingly, we also report on on-going proof-of-concept efforts aiming at developing the first prototypical implementation of the approach in order to correct and extend an LR called ConceptNet based on the input crowdsourced from language learners. We then present an international network called the European Network for Combining Language Learning with Crowdsourcing Techniques (enetCollect) that provides the context to accelerate the implementation of this generic approach. Finally, we exemplify how it can be used in several language learning scenarios to produce a multitude of NLP resources and how it can therefore alleviate the long-standing NLP issue of the lack of LRs.

pdf bib
Using Crowdsourced Exercises for Vocabulary Training to Expand ConceptNet
Christos Rodosthenous | Verena Lyding | Federico Sangati | Alexander König | Umair ul Hassan | Lionel Nicolas | Jolita Horbacauskiene | Anisia Katinskaia | Lavinia Aparaschivei
Proceedings of the 12th Language Resources and Evaluation Conference

In this work, we report on a crowdsourcing experiment conducted using the V-TREL vocabulary trainer which is accessed via a Telegram chatbot interface to gather knowledge on word relations suitable for expanding ConceptNet. V-TREL is built on top of a generic architecture implementing the implicit crowdsourding paradigm in order to offer vocabulary training exercises generated from the commonsense knowledge-base ConceptNet and – in the background – to collect and evaluate the learners’ answers to extend ConceptNet with new words. In the experiment about 90 university students learning English at C1 level, based on Common European Framework of Reference for Languages (CEFR), trained their vocabulary with V-TREL over a period of 16 calendar days. The experiment allowed to gather more than 12,000 answers from learners on different question types. In this paper we present in detail the experimental setup and the outcome of the experiment, which indicates the potential of our approach for both crowdsourcing data as well as fostering vocabulary skills.

pdf bib
Toward a Paradigm Shift in Collection of Learner Corpora
Anisia Katinskaia | Sardana Ivanova | Roman Yangarber
Proceedings of the 12th Language Resources and Evaluation Conference

We present the first version of the longitudinal Revita Learner Corpus (ReLCo), for Russian. In contrast to traditional learner corpora, ReLCo is collected and annotated fully automatically, while students perform exercises using the Revita language-learning platform. The corpus currently contains 8 422 sentences exhibiting several types of errors—grammatical, lexical, orthographic, etc.—which were committed by learners during practice and were automatically annotated by Revita. The corpus provides valuable information about patterns of learner errors and can be used as a language resource for a number of research tasks, while its creation is much cheaper and faster than for traditional learner corpora. A crucial advantage of ReLCo that it grows continually while learners practice with Revita, which opens the possibility of creating an unlimited learner resource with longitudinal data collected over time. We make the pilot version of the Russian ReLCo publicly available.

2019

pdf bib
Multiple Admissibility: Judging Grammaticality using Unlabeled Data in Language Learning
Anisia Katinskaia | Sardana Ivanova
Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing

We present our work on the problem of Multiple Admissibility (MA) in language learning. Multiple Admissibility occurs in many languages when more than one grammatical form of a word fits syntactically and semantically in a given context. In second language (L2) education - in particular, in intelligent tutoring systems/computer-aided language learning (ITS/CALL) systems, which generate exercises automatically - this implies that multiple alternative answers are possible. We treat the problem as a grammaticality judgement task. We train a neural network with an objective to label sentences as grammatical or ungrammatical, using a “simulated learner corpus”: a dataset with correct text, and with artificial errors generated automatically. While MA occurs commonly in many languages, this paper focuses on learning Russian. We present a detailed classification of the types of constructions in Russian, in which MA is possible, and evaluate the model using a test set built from answers provided by the users of a running language learning system.

pdf bib
Tools for supporting language learning for Sakha
Sardana Ivanova | Anisia Katinskaia | Roman Yangarber
Proceedings of the 22nd Nordic Conference on Computational Linguistics

This paper presents an overview of the available linguistic resources for the Sakha language, and presents new tools for supporting language learning for Sakha. The essential resources include a morphological analyzer, digital dictionaries, and corpora of Sakha texts. Based on these resources, we implement a language-learning environment for Sakha in the Revita CALL platform. We extended an earlier, preliminary version of the morphological analyzer/transducer, built on the Apertium finite-state platform. The analyzer currently has an adequate level of coverage, between 86% and 89% on two Sakha corpora. Revita is a freely available online language learning platform for learners beyond the beginner level. We describe the tools for Sakha currently integrated into the Revita platform. To the best of our knowledge, at present, this is the first large-scale project undertaken to support intermediate-advanced learners of a minority Siberian language.

pdf bib
v-trel: Vocabulary Trainer for Tracing Word Relations - An Implicit Crowdsourcing Approach
Verena Lyding | Christos Rodosthenous | Federico Sangati | Umair ul Hassan | Lionel Nicolas | Alexander König | Jolita Horbacauskiene | Anisia Katinskaia
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

In this paper, we present our work on developing a vocabulary trainer that uses exercises generated from language resources such as ConceptNet and crowdsources the responses of the learners to enrich the language resource. We performed an empirical evaluation of our approach with 60 non-native speakers over two days, which shows that new entries to expand Concept-Net can efficiently be gathered through vocabulary exercises on word relations. We also report on the feedback gathered from the users and an expert from language teaching, and discuss the potential of the vocabulary trainer application from the user and language learner perspective. The feedback suggests that v-trel has educational potential, while in its current state some shortcomings could be identified.

2018

pdf bib
Revita: a Language-learning Platform at the Intersection of ITS and CALL
Anisia Katinskaia | Javad Nouri | Roman Yangarber
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2017

pdf bib
Grouping business news stories based on salience of named entities
Llorenç Escoter | Lidia Pivovarova | Mian Du | Anisia Katinskaia | Roman Yangarber
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

In news aggregation systems focused on broad news domains, certain stories may appear in multiple articles. Depending on the relative importance of the story, the number of versions can reach dozens or hundreds within a day. The text in these versions may be nearly identical or quite different. Linking multiple versions of a story into a single group brings several important benefits to the end-user–reducing the cognitive load on the reader, as well as signaling the relative importance of the story. We present a grouping algorithm, and explore several vector-based representations of input documents: from a baseline using keywords, to a method using salience–a measure of importance of named entities in the text. We demonstrate that features beyond keywords yield substantial improvements, verified on a manually-annotated corpus of business news stories.

pdf bib
Revita: a system for language learning and supporting endangered languages
Anisia Katinskaia | Javad Nouri | Roman Yangarber
Proceedings of the joint workshop on NLP for Computer Assisted Language Learning and NLP for Language Acquisition