Amel Fraisse


2020

pdf bib
TL-Explorer: A Digital Humanities Tool for Mapping and Analyzing Translated Literature
Alex Zhai | Zheng Zhang | Amel Fraisse | Ronald Jenn | Shelley Fisher Fishkin | Pierre Zweigenbaum
Proceedings of the The 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature

TL-Explorer is a digital humanities tool for mapping and analyzing translated literature, encompassing the World Map and the Translation Dashboard. The World Map displays collected literature of different languages, locations, and cultures and establishes the foundation for further analysis. It comprises three global maps for spatial and temporal interpretation. A further investigation into an individual point on the map leads to the Translation Dashboard. Each point represents one edition or translation. Collected translations are processed in order to build multilingual parallel corpora for a large number of under-resourced languages as well as to highlight the transnational circulation of knowledge. Our first rendition of TL-Explorer was conducted on the well-traveled American novel, Adventures of Huckleberry Finn, by Mark Twain. The maps currently chronicle nearly 400 translations of this novel. And the dashboard supports over 30 collected translations. However, the TL-Explore is easily extended to other works of literature and is not limited to type of texts, such as academic manuscripts or constitutional documents to name a few.

2018

pdf bib
DEFT2018 : recherche d’information et analyse de sentiments dans des tweets concernant les transports en Île de France (DEFT2018 : Information Retrieval and Sentiment Analysis in Tweets about Public Transportation in Île de France Region )
Patrick Paroubek | Cyril Grouin | Patrice Bellot | Vincent Claveau | Iris Eshkol-Taravella | Amel Fraisse | Agata Jackiewicz | Jihen Karoui | Laura Monceaux | Juan-Manuel Torres-Moreno
Actes de la Conférence TALN. Volume 2 - Démonstrations, articles des Rencontres Jeunes Chercheurs, ateliers DeFT

Cet article présente l’édition 2018 de la campagne d’évaluation DEFT (Défi Fouille de Textes). A partir d’un corpus de tweets, quatre tâches ont été proposées : identifier les tweets sur la thématique des transports, puis parmi ces derniers, identifier la polarité (négatif, neutre, positif, mixte), identifier les marqueurs de sentiment et la cible, et enfin, annoter complètement chaque tweet en source et cible des sentiments exprimés. Douze équipes ont participé, majoritairement sur les deux premières tâches. Sur l’identification de la thématique des transports, la micro F-mesure varie de 0,827 à 0,908. Sur l’identification de la polarité globale, la micro F-mesure varie de 0,381 à 0,823.

2015

pdf bib
Utiliser les interjections pour détecter les émotions
Amel Fraisse | Patrick Paroubek
Actes de la 22e conférence sur le Traitement Automatique des Langues Naturelles. Articles longs

Bien que les interjections soient un phénomène linguistique connu, elles ont été peu étudiées et cela continue d’être le cas pour les travaux sur les microblogs. Des travaux en analyse de sentiments ont montré l’intérêt des émoticônes et récemment des mots-dièses, qui s’avèrent être très utiles pour la classification en polarité. Mais malgré leur statut grammatical et leur richesse sémantique, les interjections sont restées marginalisées par les systèmes d’analyse de sentiments. Nous montrons dans cet article l’apport majeur des interjections pour la détection des émotions. Nous détaillons la production automatique, basée sur les interjections, d’un corpus étiqueté avec les émotions. Nous expliquons ensuite comment nous avons utilisé ce corpus pour en déduire, automatiquement, un lexique affectif pour le français. Ce lexique a été évalué sur une tâche de détection des émotions, qui a montré un gain en mesure F1 allant, selon les émotions, de +0,04 à +0,21.

2014

pdf bib
Toward a unifying model for Opinion, Sentiment and Emotion information extraction
Amel Fraisse | Patrick Paroubek
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

This paper presents a logical formalization of a set 20 semantic categories related to opinion, emotion and sentiment. Our formalization is based on the BDI model (Belief, Desire and Intetion) and constitues a first step toward a unifying model for subjective information extraction. The separability of the subjective classes that we propose was assessed both formally and on two subjective reference corpora.

2013

pdf bib
Improving Minor Opinion Polarity Classification with Named Entity Analysis (L’apport des Entités Nommées pour la classification des opinions minoritaires) [in French]
Amel Fraisse | Patrick Paroubek | Gil Francopoulo
Proceedings of TALN 2013 (Volume 2: Short Papers)

2012

pdf bib
An In-Context and Collaborative Software Localisation Model
Amel Fraisse | Christian Boitet | Valérie Bellynck
Proceedings of COLING 2012: Demonstration Papers