Ambedkar Dukkipati


pdf bib
Instance-based Inductive Deep Transfer Learning by Cross-Dataset Querying with Locality Sensitive Hashing
Somnath Basu Roy Chowdhury | Annervaz M | Ambedkar Dukkipati
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)

Supervised learning models are typically trained on a single dataset and the performance of these models rely heavily on the size of the dataset i.e., the amount of data available with ground truth. Learning algorithms try to generalize solely based on the data that it is presented with during the training. In this work, we propose an inductive transfer learning method that can augment learning models by infusing similar instances from different learning tasks in Natural Language Processing (NLP) domain. We propose to use instance representations from a source dataset, without inheriting anything else from the source learning model. Representations of the instances of source and target datasets are learned, retrieval of relevant source instances is performed using soft-attention mechanism and locality sensitive hashing and then augmented into the model during training on the target dataset. Therefore, while learning from a training data, we also simultaneously exploit and infuse relevant local instance-level information from an external data. Using this approach we have shown significant improvements over the baseline for three major news classification datasets. Experimental evaluations also show that the proposed approach reduces dependency on labeled data by a significant margin for comparable performance. With our proposed cross dataset learning procedure we show that one can achieve competitive/better performance than learning from a single dataset.


pdf bib
Learning beyond Datasets: Knowledge Graph Augmented Neural Networks for Natural Language Processing
Annervaz K M | Somnath Basu Roy Chowdhury | Ambedkar Dukkipati
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Machine Learning has been the quintessential solution for many AI problems, but learning models are heavily dependent on specific training data. Some learning models can be incorporated with prior knowledge using a Bayesian setup, but these learning models do not have the ability to access any organized world knowledge on demand. In this work, we propose to enhance learning models with world knowledge in the form of Knowledge Graph (KG) fact triples for Natural Language Processing (NLP) tasks. Our aim is to develop a deep learning model that can extract relevant prior support facts from knowledge graphs depending on the task using attention mechanism. We introduce a convolution-based model for learning representations of knowledge graph entity and relation clusters in order to reduce the attention space. We show that the proposed method is highly scalable to the amount of prior information that has to be processed and can be applied to any generic NLP task. Using this method we show significant improvement in performance for text classification with 20Newsgroups (News20) & DBPedia datasets, and natural language inference with Stanford Natural Language Inference (SNLI) dataset. We also demonstrate that a deep learning model can be trained with substantially less amount of labeled training data, when it has access to organized world knowledge in the form of a knowledge base.